71 research outputs found
A dedicated electric oven for characterization of thermoresistive polymer nanocomposites
AbstractThe construction, characterization and control of an electric oven dedicated to the study of thermoresistive polymer nanocomposites is presented. The oven is designed with a heating plate capable of reaching 300°C with a resolution of 0.3°C and an area of uniform temperature of 3.8cm×2.5cm. The temperature is regulated by means of a discrete proportional–integral–derivative controller. A heat transfer model comprising three coupled non-linear differential equations is proposed to predict the thermal profiles of the oven during heating and cooling, which are experimentally verified. The oven is used for thermoresistive characterization of polymer nanocomposites manufactured from a polysulfone polymer and multiwall carbon nanotubes
TRY plant trait database – enhanced coverage and open access
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990�2015: a systematic analysis for the Global Burden of Disease Study 2015
Background Non-fatal outcomes of disease and injury increasingly detract from the ability of the world's population to live in full health, a trend largely attributable to an epidemiological transition in many countries from causes affecting children, to non-communicable diseases (NCDs) more common in adults. For the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015), we estimated the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015. Methods We estimated incidence and prevalence by age, sex, cause, year, and geography with a wide range of updated and standardised analytical procedures. Improvements from GBD 2013 included the addition of new data sources, updates to literature reviews for 85 causes, and the identification and inclusion of additional studies published up to November, 2015, to expand the database used for estimation of non-fatal outcomes to 60�900 unique data sources. Prevalence and incidence by cause and sequelae were determined with DisMod-MR 2.1, an improved version of the DisMod-MR Bayesian meta-regression tool first developed for GBD 2010 and GBD 2013. For some causes, we used alternative modelling strategies where the complexity of the disease was not suited to DisMod-MR 2.1 or where incidence and prevalence needed to be determined from other data. For GBD 2015 we created a summary indicator that combines measures of income per capita, educational attainment, and fertility (the Socio-demographic Index SDI) and used it to compare observed patterns of health loss to the expected pattern for countries or locations with similar SDI scores. Findings We generated 9·3 billion estimates from the various combinations of prevalence, incidence, and YLDs for causes, sequelae, and impairments by age, sex, geography, and year. In 2015, two causes had acute incidences in excess of 1 billion: upper respiratory infections (17·2 billion, 95% uncertainty interval UI 15·4�19·2 billion) and diarrhoeal diseases (2·39 billion, 2·30�2·50 billion). Eight causes of chronic disease and injury each affected more than 10% of the world's population in 2015: permanent caries, tension-type headache, iron-deficiency anaemia, age-related and other hearing loss, migraine, genital herpes, refraction and accommodation disorders, and ascariasis. The impairment that affected the greatest number of people in 2015 was anaemia, with 2·36 billion (2·35�2·37 billion) individuals affected. The second and third leading impairments by number of individuals affected were hearing loss and vision loss, respectively. Between 2005 and 2015, there was little change in the leading causes of years lived with disability (YLDs) on a global basis. NCDs accounted for 18 of the leading 20 causes of age-standardised YLDs on a global scale. Where rates were decreasing, the rate of decrease for YLDs was slower than that of years of life lost (YLLs) for nearly every cause included in our analysis. For low SDI geographies, Group 1 causes typically accounted for 20�30% of total disability, largely attributable to nutritional deficiencies, malaria, neglected tropical diseases, HIV/AIDS, and tuberculosis. Lower back and neck pain was the leading global cause of disability in 2015 in most countries. The leading cause was sense organ disorders in 22 countries in Asia and Africa and one in central Latin America; diabetes in four countries in Oceania; HIV/AIDS in three southern sub-Saharan African countries; collective violence and legal intervention in two north African and Middle Eastern countries; iron-deficiency anaemia in Somalia and Venezuela; depression in Uganda; onchoceriasis in Liberia; and other neglected tropical diseases in the Democratic Republic of the Congo. Interpretation Ageing of the world's population is increasing the number of people living with sequelae of diseases and injuries. Shifts in the epidemiological profile driven by socioeconomic change also contribute to the continued increase in years lived with disability (YLDs) as well as the rate of increase in YLDs. Despite limitations imposed by gaps in data availability and the variable quality of the data available, the standardised and comprehensive approach of the GBD study provides opportunities to examine broad trends, compare those trends between countries or subnational geographies, benchmark against locations at similar stages of development, and gauge the strength or weakness of the estimates available. Funding Bill & Melinda Gates Foundation. © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licens
Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990�2015: a systematic analysis for the Global Burden of Disease Study 2015
Background Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. Findings Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2·9 years (95 uncertainty interval 2·9�3·0) for men and 3·5 years (3·4�3·7) for women, while HALE at age 65 years improved by 0·85 years (0·78�0·92) and 1·2 years (1·1�1·3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. Interpretation Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum. Funding Bill & Melinda Gates Foundation. © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licens
Microarray data analysis: From hypotheses to conclusions using gene expression data
We review several commonly used methods for the design and analysis of microarray data. To begin with, some experimental design issues are addressed. Several approaches for pre‐processing the data (filtering and normalization) before the statistical analysis stage are then discussed. A common first step in this type of analysis is gene selection based on statistical testing. Two approaches, permutation and model‐based methods are explained and we emphasize the need to correct for multiple testing. Moreover, powerful approaches based on gene sets are mentioned. Clustering of either genes or samples is frequently performed when analyzing microarray data. We summarize the basics of both supervised and unsupervised clustering (classification). The latter may be of use for creating diagnostic arrays, for example. Construction of biological networks, such as pathways, is a statistically challenging but complex task that is a relatively new development and hence mentioned only briefly. We finish with some remarks on literature and software. The emphasis in this paper is on the philosophy behind several statistical issues and on a critical interpretation of microarray related analysis method
Inverse microemulsion copolymerization of styrene and acrylic acid
In this paper we report the first account on the copolymerization of a water-soluble monomer (acrylic acid) and a water-insoluble monomer (styrene) in ionic inverse microemulsions. Three different surfactants were used: AOT, a cationic surfactant, DDAB (didodecyldimethylammonium bromide) and a mixture of two cationic surfactants, DDAB and DTAB (dodecyltrimethylammonium bromide). The polymerization was carried out at 60 °C using either a water-soluble (K2S2O8) or an oil-soluble (azobisisobutyronitrile or AIBN) initiator. Copolymerization of acrylic acid and styrene was achieved with the three surfactants only when AIBN was used. With potassium persulfate, only polyacrylic acid was produced
Inverse microemulsion copolymerization of styrene and acrylic acid
In this paper we report the first account on the copolymerization of a water-soluble monomer (acrylic acid) and a water-insoluble monomer (styrene) in ionic inverse microemulsions. Three different surfactants were used: AOT, a cationic surfactant, DDAB (didodecyldimethylammonium bromide) and a mixture of two cationic surfactants, DDAB and DTAB (dodecyltrimethylammonium bromide). The polymerization was carried out at 60 �C using either a water-soluble (K2S2O8) or an oil-soluble (azobisisobutyronitrile or AIBN) initiator. Copolymerization of acrylic acid and styrene was achieved with the three surfactants only when AIBN was used. With potassium persulfate, only polyacrylic acid was produced
Kinetics of microemulsion copolymerization followed by Raman spectroscopy
In this work the kinetics of microemulsion copolymerization of styrene-methyl methacrylate using dodecyltrimethylammonium bromide (DTAB) was followed on line by low-resolution Raman spectroscopy. Reactions were carried out in a three-mouth reactor at 60°C. Raman spectra were taken every 30 seconds. Because the spectrophotometer has low resolution, the C=C peak overlaps with the aromatic ring stretch vibration and curve deconvolution was necessary. Overall conversion obtained by Raman spectroscopy agrees with that obtained by gravimetry. Because the overlap of the C=C peaks of styrene and methyl methacrylate, it was not possible to follow the individual monomer conversion by this technique
Microemulsion copolymerization of styrene-methyl methacrylate followed on line by low-resolution Raman spectroscopy
In this work, the kinetics of microemulsion copolymerization of styrene (St) and methyl methacrylate (MMA) at 608C using dodecyltrimethylammonium bromide (DTAB) as the surfactant was followed on line by lowresolution Raman spectroscopy. Raman spectra were taken every 30 s. Because the spectrophotometer has low resolution, the C=C peak overlaps with the St aromatic ring stretch vibration and curve deconvolution was necessary. Overall conversion obtained by Raman spectroscopy agrees with that obtained by gravimetry. Copolymer composition was determined by following the area changes of the C-O-C bending mode peak of MMA. Compositions determined by this method agree with those measured by NMR spectroscopy. POLYM. ENG. SCI., 49:2125-2131, 2009. © 2009 Society of Plastics Engineers
- …