670 research outputs found
Effects of PDE-5 Inhibition on the Cardiopulmonary System After 2 or 4 Weeks of Chronic Hypoxia.
In pulmonary hypertension (PH), hypoxia represents both an outcome and a cause of exacerbation. We addressed the question whether hypoxia adaptation might affect the mechanisms underlying PH alleviation through phosphodiesterase-5 (PDE5) inhibition.
Eight-week-old male Sprague-Dawley rats were divided into two groups depending on treatment (placebo or sildenafil, a drug inhibiting PDE5) and were exposed to hypoxia (10% O <sub>2</sub> ) for 0 (t0, n = 9/10), 2 (t2, n = 5/5) or 4 (t4, n = 5/5) weeks. The rats were treated (0.3 mL i.p.) with either saline or sildenafil (1.4 mg/Kg per day).
Two-week hypoxia changed the body weight (- 31% vs. - 27%, respectively, P = NS), blood hemoglobin (+ 25% vs. + 27%, P = NS) and nitrates+nitrites (+ 175% vs. + 261%, P = 0.007), right ventricle fibrosis (+ 814% vs. + 317%, P < 0.0001), right ventricle hypertrophy (+ 84% vs. + 49%, P = 0.007) and systolic pressure (+ 108% vs. + 41%, P = 0.001), pulmonary vessel density (+ 61% vs. + 46%, P = NS), and the frequency of small (< 50 µm wall thickness) vessels (+ 35% vs. + 13%, P = 0.0001). Most of these changes were maintained for 4-week hypoxia, except blood hemoglobin and right ventricle hypertrophy that continued increasing (+ 52% vs. + 42%, P = NS; and + 104% vs. + 83%, P = 0.04). To further assess these observations, small vessel frequency was found to be linearly related with the right ventricle-developed pressure independent of hypoxia duration.
Thus, although hypoxia adaptation is not yet accomplished after 4 weeks, PH alleviation by PDE5 inhibition might nevertheless provide an efficient strategy for the management of this disease
Animal model to compare the effects of suture technique on cross-sectional compliance on end-to-side anastomoses
Objective: An animal model has been developed to compare the effects of suture technique on the luminal dimensions and compliance of end-to-side vascular anastomoses. Methods: Carotid and internal mammalian arteries (IMAs) were exposed in three pigs (90 kg). IMAs were sectioned distally to perform end-to-side anastomoses on carotid arteries. One anastomosis was performed with 7/0 polypropylene running suture. The other was performed with the automated suture delivery device (Perclose/Abbott Labs Inc.) that makes a 7/0 polypropylene interrupted suture. Four piezoelectric crystals were sutured on toe, heel and both lateral sides of each anastomosis to measure anastomotic axes. Anastomotic cross-sectional area (CSAA) was calculated with: CSAA = π × mM/4 where m and M are the minor and major axes of the elliptical anastomosis. Cross-sectional anastomotic compliance (CSAC) was calculated as CSAC = δCSAA/δP where δP is the mean pulse pressure and δCSAA is the mean CSAA during cardiac cycle. Results: We collected a total of 1 200 000 pressure-length data per animal. For running suture we had a mean systolic CSAA of 26.94±0.4 mm2 and a mean CSAA in diastole of 26.30±0.5 mm2 (mean δCSAA was 0.64 mm2). CSAC for running suture was 4.5×10−6m2/kPa. For interrupted suture we had a mean CSAA in systole of 21.98±0.2 mm2 and a mean CSAA in diastole of 17.38±0.3 mm2 (mean δCSAA was 4.6±0.1 mm2). CSAC for interrupted suture was 11×10−6 m2/kPa. Conclusions: This model, even with some limitations, can be a reliable source of information improving the outcome of vascular anastomoses. The study demonstrates that suture technique has a substantial effect on cross-sectional anastomotic compliance of end-to-side anastomoses. Interrupted suture may maximise the anastomotic lumen and provides a considerably higher CSAC than continuous suture, that reduces flow turbulence, shear stress and intimal hyperplasia. The Heartflo™ anastomosis device is a reliable instrument that facilitates performance of interrupted suture anastomose
Physiological Fontan Procedure
© 2019 Corno, Owen, Cangiani, Hall and Rona. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Objective: The conventional Fontan circulation deviates the superior vena cava (SVC = 1/3 of the systemic venous return) toward the right lung (3/5 of total lung volume) and the inferior vena cava (IVC = 2/3 of the systemic venous return) toward the left lung (2/5 of total lung volume). A “physiological” Fontan deviating the SVC toward the left lung and the IVC toward the right lung was compared with the conventional setting by computational fluid dynamics, studying whether this setting achieves a more favorable hemodynamics than the conventional Fontan circulation. Materials and Methods: An in-silico 3D parametric model of the Fontan procedure was developed using idealized vascular geometries with invariant sizes of SVC, IVC, right pulmonary artery (RPA), and left pulmonary artery (LPA), steady inflow velocities at IVC and SVC, and constant equal outflow pressures at RPA and LPA. These parameters were set to perform finite-volume incompressible steady flow simulations, assuming a single-phase, Newtonian, isothermal, laminar blood flow. Numerically converged finite-volume mass and momentum flow balances determined the inlet pressures and the outflow rates. Numerical closed-path integration of energy fluxes across domain boundaries determined the flow energy loss rate through the Fontan circulation. The comparison evaluated: (1) mean IVC pressure; (2) energy loss rate; (3) kinetic energy maximum value throughout the domain volume. Results: The comparison of the physiological vs. conventional Fontan provided these results: (1) mean IVC pressure 13.9 vs. 14.1 mmHg (= 0.2 mmHg reduction); (2) energy loss rate 5.55 vs. 6.61 mW (= 16% reduction); (3) maximum kinetic energy 283 vs. 396 J/m3 (= 29% reduction). Conclusions: A more physiological flow distribution is accompanied by a reduction of mean IVC pressure and by substantial reductions of energy loss rate and of peak kinetic energy. The potential clinical impact of these hemodynamic changes in reducing the incidence and severity of the adverse long-term effects of the Fontan circulation, in particular liver failure and protein-losing enteropathy, still remains to be assessed and will be the subject of future work
Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations
Since myocardial fibers drive the electric signal propagation throughout the
myocardium, accurately modeling their arrangement is essential for simulating
heart electrophysiology (EP). Rule-Based-Methods (RBMs) represent a commonly
used strategy to include cardiac fibers in computational models. A particular
class of such methods is known as Laplace-Dirichlet-Rule-Based-Methods (LDRBMs)
since they rely on the solution of Laplace problems. In this work we provide a
unified framework, based on LDRBMs, for generating full heart muscle fibers.
First, we review existing ventricular LDRBMs providing a communal mathematical
description and introducing also some modeling improvements with respect to the
existing literature. We then carry out a systematic comparison of LDRBMs based
on meaningful biomarkers produced by numerical EP simulations. Next we propose,
for the first time, a LDRBM to be used for generating atrial fibers. The new
method, tested both on idealized and realistic atrial models, can be applied to
any arbitrary geometries. Finally, we present numerical results obtained in a
realistic whole heart where fibers are included for all the four chambers using
the discussed LDRBMs
The significance of motivation in student-centred learning : a reflective case study
The theoretical underpinnings of student-centred learning suggest motivation to be an integral component. However, lack of clarification of what is involved in motivation in education often results in unchallenged assumptions that fail to recognise that what motivates some students may alienate others. This case study, using socio-cognitive motivational theory to analyse previously collected data, derives three fuzzy propositions which, collectively, suggest that motivation interacts with the whole cycle of episodes in the teachinglearning process. It argues that the development of the higherlevel cognitive competencies that are implied by the term, student-centred learning, must integrate motivational constructs such as goal orientation, volition, interest and attributions into pedagogical practices
Divided right atrium. Diagnosis by echocardiography, and considerations on the functional role of the Eustachian valve
A child presented at birth with severe cyanosis. Echocardiography showed hypoplasia of the right heart with a right-to-left shunt at atrial level. A conservative approach was adopted initially, and the situation improved over a few months, with reversal of the atrial shunt. Surgery was successfully performed at 4 years of age after further echocardiography revealed a congenitally large Eustachian valve and an atrial septal defect
Role of the Receptor Tyrosine Kinase Axl and its Targeting in Cancer Cells
Aberrant expression and activation of receptor tyrosine kinases (RTK) is a frequent feature of tumor cells that may underlie tumor aggressiveness. Among RTK, Axl, a member of the Tyro3-Axl-Mer family, represents a potential therapeutic target in different tumor types given its over-expression which leads to activation of oncogenic signaling promoting cell proliferation and survival, as well as migration and invasion. Axl can promote aggressiveness of various cell types through PI3K/Akt and/or MAPK/ERK, and its expression can be transcriptionally regulated by multiple factors. Deregulated Axl expression and activation have been shown to be implicated in reduced sensitivity of tumor cells to target-specific and conventional antitumor agents, but the precise mechanism underlying these phenomena are still poorly understood. Several small molecules acting as Axl inhibitors have been reported, and some of them are undergoing clinical investigation. In this review, we describe Axl biological functions, its expression in cancer and in drug-resistant tumor cells and the development of inhibitors tailored to this receptor tyrosine kinase
Halide substitution in Ca(BH4)2
Halide substitution in Ca(BH4)2 has been investigated in ball milled mixtures of Ca(BH4)2 and CaX2 (X \ubc F, Cl, Br) with different molar ratios. In situ synchrotron radiation powder X-ray diffraction measurements of Ca(BH4)2 + CaCl2 with 1 : 0.5, 1 : 1 and 1 : 2 molar ratios reveal that no substitution of Cl for BH4 occurs from the ball milling process. However, substitution readily occurs after the transitions from a- to b-Ca(BH4)2 and from orthorhombic to tetragonal CaCl2 upon heating above 250 C, which is evident from both contraction of the unit cell and changes in the relative Bragg peak intensities, in agreement with theoretical calculations. Rietveld analyses of the obtained b-Ca((BH4)1xClx)2 solid solutions indicate compositions from x \ubc 0 to 0.6, depending on the amount of CaCl2 in the parent mixtures. b-Ca((BH4)0.5Cl0.5)2 was investigated by differential scanning calorimetry and has a slightly higher decomposition temperature compared to pure Ca(BH4)2. No substitution with CaF2 or CaBr2 is observed
- …