2,533 research outputs found
International food patterns for space food
The purpose of this research was to obtain basic data on ethnic foods by studying dietary patterns and multicultural foods, and to determine nutritional status of multicultural space explorers by evaluating dietary, clinical, biochemical, and socioeconomic factors. The study will plan a significant role in providing nutritional research for space explorers of different ethnic backgrounds. It will provide scientific background information by bringing together cross cultural dietary and nutritional from different ethnic groups. Results will also help the health care personnel including physicians, dietitians, and nutritionists to better understand and assist patients from other cultures illness. Also, the results will provide data which will help in the development of future food plans for long duration flights involving manned exploration to Mars and lunar base colonies
Co-accelerated particles in the C-metric
With appropriately chosen parameters, the C-metric represents two uniformly
accelerated black holes moving in the opposite directions on the axis of the
axial symmetry (the z-axis). The acceleration is caused by nodal singularities
located on the z-axis.
In the~present paper, geodesics in the~C-metric are examined. In general
there exist three types of timelike or null geodesics in the C-metric:
geodesics describing particles 1) falling under the black hole horizon;
2)crossing the acceleration horizon; and 3) orbiting around the z-axis and
co-accelerating with the black holes.
Using an effective potential, it can be shown that there exist stable
timelike geodesics of the third type if the product of the parameters of the
C-metric, mA, is smaller than a certain critical value. Null geodesics of the
third type are always unstable. Special timelike and null geodesics of the
third type are also found in an analytical form.Comment: 10 pages, 12 EPS figures, changes mainly in abstract & introductio
Letter from Frank V. Cornish to John Muir, 1905 Feb 28.
[letterhead]Feb 28, 1905My dear Dr. Muir,-I have received the January Bulletin of the Sierra Club with the November Appalachian and believe I am indebted to you for this remembrance. I thank you for this and shall be glad to have you or Miss Helen present my name for membership in the Club if you have not already done so.Father and Mother are well and ask to be remembered. They often speak of the pleasant day spent with you. Father has had a few stereographs of the Grand Canyon sent you which he begs you to receipt in token of friendship.Yours cordially,Frank V. Cornish That the flooding of the Tuol by a [illegible] would not hurt the Yo Nat Park is monstrously untrue. The Tuol & Merced are twin rivers watering all the park & the Yo Val & H H Val are twin YosDam the Tuol Yo for any other reason than because it would be easily dammed the damnation of this mercenary scheme should be made sure honeycombed with private interest s. The only [inch?] of a roof. The only spot to collect wate
Cosmic Crystallography with a Pullback
We present a modified version of the cosmic crystallography method,
especially useful for testing closed models of negative spatial curvature. The
images of clusters of galaxies in simulated catalogs are ``pulled back'' to the
fundamental domain before the set of distances is calculated.Comment: 9 pages, 2 figure
Darwin Meets Einstein: LISA Data Analysis Using Genetic Algorithms
This work presents the first application of the method of Genetic Algorithms
(GAs) to data analysis for the Laser Interferometer Space Antenna (LISA). In
the low frequency regime of the LISA band there are expected to be tens of
thousands galactic binary systems that will be emitting gravitational waves
detectable by LISA. The challenge of parameter extraction of such a large
number of sources in the LISA data stream requires a search method that can
efficiently explore the large parameter spaces involved. As signals of many of
these sources will overlap, a global search method is desired. GAs represent
such a global search method for parameter extraction of multiple overlapping
sources in the LISA data stream. We find that GAs are able to correctly extract
source parameters for overlapping sources. Several optimizations of a basic GA
are presented with results derived from applications of the GA searches to
simulated LISA data.Comment: 8 pages, 12 figure
Copper cable theft: revisiting the price–theft hypothesis
Objectives: To test the commonly espoused but little examined hypothesis that fluctuations in the price of metal are associated with changes in the volume of metal theft. Specifically, we analyze the relationship between the price of copper and the number of police recorded 'live’ copper cable thefts from the British railway network (2006 to 2012)
Ringing the eigenmodes from compact manifolds
We present a method for finding the eigenmodes of the Laplace operator acting
on any compact manifold. The procedure can be used to simulate cosmic microwave
background fluctuations in multi-connected cosmological models. Other
applications include studies of chaotic mixing and quantum chaos.Comment: 11 pages, 8 figures, IOP format. To be published in the proceedings
of the Cleveland Cosmology and Topology Workshop 17-19 Oct 1997. Submitted to
Class. Quant. Gra
A survey of spinning test particle orbits in Kerr spacetime
We investigate the dynamics of the Papapetrou equations in Kerr spacetime.
These equations provide a model for the motion of a relativistic spinning test
particle orbiting a rotating (Kerr) black hole. We perform a thorough parameter
space search for signs of chaotic dynamics by calculating the Lyapunov
exponents for a large variety of initial conditions. We find that the
Papapetrou equations admit many chaotic solutions, with the strongest chaos
occurring in the case of eccentric orbits with pericenters close to the limit
of stability against plunge into a maximally spinning Kerr black hole. Despite
the presence of these chaotic solutions, we show that physically realistic
solutions to the Papapetrou equations are not chaotic; in all cases, the
chaotic solutions either do not correspond to realistic astrophysical systems,
or involve a breakdown of the test-particle approximation leading to the
Papapetrou equations (or both). As a result, the gravitational radiation from
bodies spiraling into much more massive black holes (as detectable, for
example, by LISA, the Laser Interferometer Space Antenna) should not exhibit
any signs of chaos.Comment: Submitted to Phys. Rev. D. Follow-up to gr-qc/0210042. Figures are
low-resolution in order to satisfy archive size constraints; a
high-resolution version is available at http://www.michaelhartl.com/papers
Stochastic theory of large-scale enzyme-reaction networks: Finite copy number corrections to rate equation models
Chemical reactions inside cells occur in compartment volumes in the range of
atto- to femtolitres. Physiological concentrations realized in such small
volumes imply low copy numbers of interacting molecules with the consequence of
considerable fluctuations in the concentrations. In contrast, rate equation
models are based on the implicit assumption of infinitely large numbers of
interacting molecules, or equivalently, that reactions occur in infinite
volumes at constant macroscopic concentrations. In this article we compute the
finite-volume corrections (or equivalently the finite copy number corrections)
to the solutions of the rate equations for chemical reaction networks composed
of arbitrarily large numbers of enzyme-catalyzed reactions which are confined
inside a small sub-cellular compartment. This is achieved by applying a
mesoscopic version of the quasi-steady state assumption to the exact
Fokker-Planck equation associated with the Poisson Representation of the
chemical master equation. The procedure yields impressively simple and compact
expressions for the finite-volume corrections. We prove that the predictions of
the rate equations will always underestimate the actual steady-state substrate
concentrations for an enzyme-reaction network confined in a small volume. In
particular we show that the finite-volume corrections increase with decreasing
sub-cellular volume, decreasing Michaelis-Menten constants and increasing
enzyme saturation. The magnitude of the corrections depends sensitively on the
topology of the network. The predictions of the theory are shown to be in
excellent agreement with stochastic simulations for two types of networks
typically associated with protein methylation and metabolism.Comment: 13 pages, 4 figures; published in The Journal of Chemical Physic
Chaotic Scattering and Capture of Strings by Black Hole
We consider scattering and capture of circular cosmic strings by a
Schwarzschild black hole. Although being a priori a very simple axially
symmetric two-body problem, it shows all the features of chaotic scattering. In
particular, it contains a fractal set of unstable periodic solutions; a
so-called strange repellor. We study the different types of trajectories and
obtain the fractal dimension of the basin-boundary separating the space of
initial conditions according to the different asymptotic outcomes. We also
consider the fractal dimension as a function of energy, and discuss the
transition from order to chaos.Comment: RevTeX 3.1, 9 pages, 5 figure
- …