3,362 research outputs found
Detecting the Cosmic Gravitational Wave Background with the Big Bang Observer
The detection of the Cosmic Microwave Background Radiation (CMB) was one of
the most important cosmological discoveries of the last century. With the
development of interferometric gravitational wave detectors, we may be in a
position to detect the gravitational equivalent of the CMB in this century. The
Cosmic Gravitational Background (CGB) is likely to be isotropic and stochastic,
making it difficult to distinguish from instrument noise. The contribution from
the CGB can be isolated by cross-correlating the signals from two or more
independent detectors. Here we extend previous studies that considered the
cross-correlation of two Michelson channels by calculating the optimal signal
to noise ratio that can be achieved by combining the full set of interferometry
variables that are available with a six link triangular interferometer. In
contrast to the two channel case, we find that the relative orientation of a
pair of coplanar detectors does not affect the signal to noise ratio. We apply
our results to the detector design described in the Big Bang Observer (BBO)
mission concept study and find that BBO could detect a background with
.Comment: 15 pages, 12 Figure
LISA data analysis I: Doppler demodulation
The orbital motion of the Laser Interferometer Space Antenna (LISA) produces
amplitude, phase and frequency modulation of a gravitational wave signal. The
modulations have the effect of spreading a monochromatic gravitational wave
signal across a range of frequencies. The modulations encode useful information
about the source location and orientation, but they also have the deleterious
affect of spreading a signal across a wide bandwidth, thereby reducing the
strength of the signal relative to the instrument noise. We describe a simple
method for removing the dominant, Doppler, component of the signal modulation.
The demodulation reassembles the power from a monochromatic source into a
narrow spike, and provides a quick way to determine the sky locations and
frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde
Facing the LISA Data Analysis Challenge
By being the first observatory to survey the source rich low frequency region
of the gravitational wave spectrum, the Laser Interferometer Space Antenna
(LISA) will revolutionize our understanding of the Cosmos. For the first time
we will be able to detect the gravitational radiation from millions of galactic
binaries, the coalescence of two massive black holes, and the inspirals of
compact objects into massive black holes. The signals from multiple sources in
each class, and possibly others as well, will be simultaneously present in the
data. To achieve the enormous scientific return possible with LISA,
sophisticated data analysis techniques must be developed which can mine the
complex data in an effort to isolate and characterize individual signals. This
proceedings paper very briefly summarizes the challenges associated with
analyzing the LISA data, the current state of affairs, and the necessary next
steps to move forward in addressing the imminent challenges.Comment: 4 pages, no figures, Proceedings paper for the TeV Particle
Astrophysics II conference held Aug 28-31 at the Univ. of Wisconsi
Extracting galactic binary signals from the first round of Mock LISA Data Challenges
We report on the performance of an end-to-end Bayesian analysis pipeline for
detecting and characterizing galactic binary signals in simulated LISA data.
Our principal analysis tool is the Blocked-Annealed Metropolis Hasting (BAM)
algorithm, which has been optimized to search for tens of thousands of
overlapping signals across the LISA band. The BAM algorithm employs Bayesian
model selection to determine the number of resolvable sources, and provides
posterior distribution functions for all the model parameters. The BAM
algorithm performed almost flawlessly on all the Round 1 Mock LISA Data
Challenge data sets, including those with many highly overlapping sources. The
only misses were later traced to a coding error that affected high frequency
sources. In addition to the BAM algorithm we also successfully tested a Genetic
Algorithm (GA), but only on data sets with isolated signals as the GA has yet
to be optimized to handle large numbers of overlapping signals.Comment: 13 pages, 4 figures, submitted to Proceedings of GWDAW-11 (Berlin,
Dec. '06
Time-frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data
Extreme-mass-ratio inspirals (EMRIs) of ~ 1-10 solar-mass compact objects
into ~ million solar-mass massive black holes can serve as excellent probes of
strong-field general relativity. The Laser Interferometer Space Antenna (LISA)
is expected to detect gravitational wave signals from apprxomiately one hundred
EMRIs per year, but the data analysis of EMRI signals poses a unique set of
challenges due to their long duration and the extensive parameter space of
possible signals. One possible approach is to carry out a search for EMRI
tracks in the time-frequency domain. We have applied a time-frequency search to
the data from the Mock LISA Data Challenge (MLDC) with promising results. Our
analysis used the Hierarchical Algorithm for Clusters and Ridges to identify
tracks in the time-frequency spectrogram corresponding to EMRI sources. We then
estimated the EMRI source parameters from these tracks. In these proceedings,
we discuss the results of this analysis of the MLDC round 1.3 data.Comment: Amaldi-7 conference proceedings; requires jpconf style file
The Effects of Orbital Motion on LISA Time Delay Interferometry
In an effort to eliminate laser phase noise in laser interferometer
spaceborne gravitational wave detectors, several combinations of signals have
been found that allow the laser noise to be canceled out while gravitational
wave signals remain. This process is called time delay interferometry (TDI). In
the papers that defined the TDI variables, their performance was evaluated in
the limit that the gravitational wave detector is fixed in space. However, the
performance depends on certain symmetries in the armlengths that are available
if the detector is fixed in space, but that will be broken in the actual
rotating and flexing configuration produced by the LISA orbits. In this paper
we investigate the performance of these TDI variables for the real LISA orbits.
First, addressing the effects of rotation, we verify Daniel Shaddock's result
that the Sagnac variables will not cancel out the laser phase noise, and we
also find the same result for the symmetric Sagnac variable. The loss of the
latter variable would be particularly unfortunate since this variable also
cancels out gravitational wave signal, allowing instrument noise in the
detector to be isolated and measured. Fortunately, we have found a set of more
complicated TDI variables, which we call Delta-Sagnac variables, one of which
accomplishes the same goal as the symmetric Sagnac variable to good accuracy.
Finally, however, as we investigate the effects of the flexing of the detector
arms due to non-circular orbital motion, we show that all variables, including
the interferometer variables, which survive the rotation-induced loss of
direction symmetry, will not completely cancel laser phase noise when the
armlengths are changing with time. This unavoidable problem will place a
stringent requirement on laser stability of 5 Hz per root Hz.Comment: 12 pages, 2 figure
Corrections to Gravity due to a Sol Manifold Extra Dimensional Space
The corrections to the gravitational potential due to a Sol extra dimensional
compact manifold, denoted as , are studied. The total spacetime is of
the form . The range of the Sol corrections is investigated
and compared to the range of the corrections.Comment: 13 pages, 10 figures, published versio
Detection Strategies for Extreme Mass Ratio Inspirals
The capture of compact stellar remnants by galactic black holes provides a
unique laboratory for exploring the near horizon geometry of the Kerr
spacetime, or possible departures from general relativity if the central cores
prove not to be black holes. The gravitational radiation produced by these
Extreme Mass Ratio Inspirals (EMRIs) encodes a detailed map of the black hole
geometry, and the detection and characterization of these signals is a major
scientific goal for the LISA mission. The waveforms produced are very complex,
and the signals need to be coherently tracked for hundreds to thousands of
cycles to produce a detection, making EMRI signals one of the most challenging
data analysis problems in all of gravitational wave astronomy. Estimates for
the number of templates required to perform an exhaustive grid-based
matched-filter search for these signals are astronomically large, and far out
of reach of current computational resources. Here I describe an alternative
approach that employs a hybrid between Genetic Algorithms and Markov Chain
Monte Carlo techniques, along with several time saving techniques for computing
the likelihood function. This approach has proven effective at the blind
extraction of relatively weak EMRI signals from simulated LISA data sets.Comment: 10 pages, 4 figures, Updated for LISA 8 Symposium Proceeding
Dynamical formation and interaction of bright solitary waves and solitons in the collapse of Bose-Einstein condensates with attractive interactions
We model the dynamics of formation of multiple, long-lived, bright solitary
waves in the collapse of Bose-Einstein condensates with attractive interactions
as studied in the experiment of Cornish et al. [Phys. Rev. Lett. 96 (2006)
170401]. Using both mean-field and quantum field simulation techniques, we find
that while a number of separated wave packets form as observed in the
experiment, they do not have a repulsive \pi phase difference that has been
previously inferred. We observe that the inclusion of quantum fluctuations
causes soliton dynamics to be predominantly repulsive in one dimensional
simulations independent of their initial relative phase. However, indicative
three-dimensional simulations do not support this conclusion and in fact show
that quantum noise has a negative impact on bright solitary wave lifetimes.
Finally, we show that condensate oscillations, after the collapse, may serve to
deduce three-body recombination rates, and that the remnant atom number may
still exceed the critical number for collapse for as long as three seconds
independent of the relative phases of the bright solitary waves.Comment: 14 pages, 5 figure
- …