20 research outputs found

    Th17 cells in primary Sjogren's syndrome:Pathogenicity and plasticity

    Get PDF
    Th17 cells play an important physiological role at mucosal barriers, and are involved in inflammatory responses to pathogens. Th17 cells and their signature cytokine IL-17 are also present in salivary gland lesions of primary Sjogren's syndrome (pSS) patients and can be elevated in their peripheral blood. In pSS patients, clear correlations between increased Th17 cell activity and symptoms of the disease have not been found, but Th17 cells may contribute to disease progression, for example by supporting autoreactive B cell responses. In mouse models of pSS, Th17 cells play an important role in pathogenesis, particularly at disease onset, when there is a disturbed balance between T effector and T regulatory cells. Studying the pathogenicity of Th17 cells in humans is complicated due to the plasticity of this cell subset, allowing them to obtain different effector functions depending on the local environment. Th17 cells can develop towards Th17.1 cells, producing both IL-17 and IFN-gamma, or even towards Th1-like cells producing IFN-gamma in the absence of IL-17. These effector subsets may be more pathogenic than bona fide Th17 cells. Co-expression of IFN-y by Th17 cells has been shown to promote chronic inflammation in several auto immune diseases and may also contribute to pSS pathogenesis. In line with the noticeable role of IL-17 in pSS mouse models, interference with Th17 cell generation, recruitment or effector functions (e.g. IL-17 inhibition) can prevent or ameliorate disease in these models. Therapies targeting Th17 cells or IL-17 have not been tested so far in pSS patients, although treatment with rituximab seems to lower local and systemic IL-17 protein levels, and to a lesser extent also chemokine receptor-defined Th17 cells. In this review we discuss current knowledge of pathogenicity and plasticity of Th17 cells in human pSS and murine models of pSS. We postulate that plasticity towards Th17.1 cells in pSS may enhance pathogenicity of Th17 cells at the main target sites of the disease, i.e. salivary and lacrimal glands. (C) 2017 The Authors. Published by Elsevier Ltd

    Decreased BAFF Receptor Expression and Unaltered B Cell Receptor Signaling in Circulating B Cells from Primary Sjogren's Syndrome Patients at Diagnosis

    Get PDF
    Animal models of autoimmunity and human genetic association studies indicate that the dysregulation of B-cell receptor (BCR) signaling is an important driver of autoimmunity. We previously showed that in circulating B cells from primary Sjogren's syndrome (pSS) patients with high systemic disease activity, protein expression of the BCR signaling molecule Bruton's tyrosine kinase (BTK) was increased and correlated with T-cell infiltration in the target organ. We hypothesized that these alterations could be driven by increased B-cell activating factor (BAFF) levels in pSS. Here, we investigated whether altered BCR signaling was already present at diagnosis and distinguished pSS from non-SS sicca patients. Using (phospho-)flow cytometry, we quantified the phosphorylation of BCR signaling molecules, and investigated BTK and BAFF receptor (BAFFR) expression in circulating B cell subsets in an inception cohort of non-SS sicca and pSS patients, as well as healthy controls (HCs). We found that both BTK protein levels and BCR signaling activity were comparable among groups. Interestingly, BAFFR expression was significantly downregulated in pSS, but not in non-SS sicca patients, compared with HCs, and correlated with pSS-associated alterations in B cell subsets. These data indicate reduced BAFFR expression as a possible sign of early B cell involvement and a diagnostic marker for pSS

    Toll-Like Receptor Signaling Drives Btk-Mediated Autoimmune Disease

    Get PDF
    Bruton's tyrosine kinase (Btk) is a signaling molecule involved in development and activation of B cells through B-cell receptor (BCR) and Toll-like receptor (TLR) signaling. We have previously shown that transgenic mice that overexpress human Btk under the control of the CD19 promoter (CD19-hBtk) display spontaneous germinal center formation, increased cytokine production, anti-nuclear autoantibodies (ANAs), and systemic autoimsmune disease upon aging. As TLR and BCR signaling are both implicated in autoimmunity, we studied their impact on splenic B cells. Using phosphoflow cytometry, we observed that phosphorylation of ribosomal protein S6, a downstream Akt target, was increased in CD19-hBtk B cells following BCR stimulation or combined BCR/TLR stimulation, when compared with wild-type (WT) B cells. The CD19-hBtk transgene enhanced BCR-induced B cell survival and proliferation, but had an opposite effect following TLR9 or combined BCR/TLR9 stimulation. Although the expression of TLR9 was reduced in CD19-hBtk B cells compared to WT B cells, a synergistic effect of TLR9 and BCR stimulation on the induction of CD25 and CD80 was observed in CD19-hBtk B cells. In splenic follicular (Fol) and marginal zone (MZ) B cells from aging CD19-hBtk mice BCR signaling stimulated in vitro IL-10 production in synergy with TLR4 and particularly TLR9 stimulation, but not with TLR3 and TLR7. The enhanced capacity of CD19-hBtk Fol B cells to produce the pro-inflammatory cytokines IFNγ and IL-6 compared with WT B cells was however not further increased following in vitro BCR or TLR9 stimulation. Finally, we used crosses with mice deficient for the TLR-associated molecule myeloid differentiation primary response 88 (MyD88) to show that TLR signaling was crucial for spontaneous formation of germinal centers, increased IFNγ, and IL-6 production by B cells and anti-nuclear autoantibody induction in CD19-hBtk mice. Taken together, we conclude that high Btk expression does not only increase B cell survival following BCR stimulation, but also renders B cells more sensitive to TLR stimulation, resulting in increased expression of CD80, and IL-10 in activated B cells. Although BCR-TLR interplay is complex, our findings show that both signaling pathways are crucial for the development of pathology in a Btk-dependent model for systemic autoimmune disease

    Enhanced Bruton's tyrosine kinase in B-cells and autoreactive IgA in patients with idiopathic pulmonary fibrosis

    Get PDF
    RATIONALE: Idiopathic Pulmonary Fibrosis (IPF) is thought to be triggered by repeated alveolar epithelial cell injury. Current evidence suggests that aberrant immune activation may contribute. However, the role of B-cell activation remains unclear. We determined the phenotype and activation status of B-cell subsets and evaluated the contribution of activated B-cells to the development of lung fibrosis both in humans and in mice. METHODS: B-cells in blood, mediastinal lymph node, and lung single-cell suspensions of IPF patients and healthy controls (HC) were characterized using 14-color flow cytometry. Mice were exposed to bleomycin to provoke pulmonary fibrosis. RESULTS: More IgA+ memory B-cells and plasmablasts were found in blood (n = 27) and lungs (n = 11) of IPF patients compared to HC (n = 21) and control lungs (n = 9). IPF patients had higher levels of autoreactive IgA in plasma, which correlated with an enhanced decline of forced vital capacity (p = 0.002, r = - 0.50). Bruton's tyrosine kinase expression was higher in circulating IPF B-cells compared to HC, indicating enhanced B-cell activation. Bleomycin-exposed mice had increased pulmonary IgA+ germinal center and plasma cell proportions compared to control mice. The degree of lung fibrosis correlated with pulmonary germinal center B-cell proportions (p = 0.010, r = 0.88). CONCLUSION: Our study demonstrates that IPF patients have more circulating activated B-cells and autoreactive IgA, which correlate with disease progression. These B-cell alterations were also observed in the widely used mouse model of experimental pulmonary fibrosis. Autoreactive IgA could be useful as a biomarker for disease progression in IPF

    Enhanced Expression of Bruton’s Tyrosine Kinase in B Cells Drives Systemic Autoimmunity by Disrupting T Cell Homeostasis

    No full text
    Upon BCR stimulation, naive B cells increase protein levels of the key downstream signaling molecule Bruton's tyrosine kinase (BTK). Transgenic CD19-hBtk mice with B cell specific BTK overexpression show spontaneous germinal center formation, antinuclear autoantibodies, and systemic autoimmunity resembling lupus and Sjogren syndrome. However, it remains unknown how T cells are engaged in this pathology. In this study, we found that CD19-hBtk B cells were high in IL-6 and IL-10 and disrupted T cell homeostasis in vivo. CD19-hBtk B cells promoted IFN-gamma production by T cells and expression of the immune-checkpoint protein ICOS on T cells and induced follicular Th cell differentiation. Crosses with CD40L-deficient mice revealed that increased IL-6 production and autoimmune pathology in CD19-hBtk mice was dependent on B T cell interaction, whereas IL-10 production and IgM autoantibody formation were CD40L independent. Surprisingly, in Btk-overexpressing mice, naive B cells manifested increased CD86 expression, which was dependent on CD40L, suggesting that T cells interact with B cells in a very early stage of immune pathology. These findings indicate that increased BTK-mediated signaling in B cells involves a positive-feedback loop that establishes T cell propagated autoimmune pathology, making BTK an attractive therapeutic target in autoimmune disease

    Aberrant B Cell Receptor Signaling in Naïve B Cells from Patients with Idiopathic Pulmonary Fibrosis

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a chronic and ultimately fatal disease in which an impaired healing response to recurrent micro-injuries is thought to lead to fibrosis. Recent findings hint at a role for B cells and autoimmunity in IPF pathogenesis. We previously reported that circulating B cells from a fraction of patients, compared with healthy controls, express increased levels of the signaling molecule Bruton’s tyrosine kinase (BTK). However, it remains unclear whether B cell receptor (BCR) signaling is altered in IPF. Here, we show that the response to BCR stimulation is enhanced in peripheral blood B cells from treatment-naïve IPF patients. We observed increased anti-immunoglobulin-induced phosphorylation of BTK and its substrate phospholipase Cγ2 (PLCγ2) in naïve but not in memory B cells of patients with IPF. In naïve B cells of IPF patients enhanced BCR signaling correlated with surface expression of transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI) but not B cell activating factor receptor (BAFFR), both of which provide pro-survival signals. Interestingly, treatment of IPF patients with nintedanib, a tyrosine kinase inhibitor with anti-fibrotic and anti-inflammatory activity, induced substantial changes in BCR signaling. These findings support the involvement of B cells in IPF pathogenesis and suggest that targeting BCR signaling has potential value as a treatment option
    corecore