6 research outputs found

    Mechanical properties of alkali activated geopolymer paste using different Romanian fly ash sources – experimental results

    No full text
    As concrete demand is constantly increasing in recent years and also considering that cement production is both a consumer of natural resources and a source of carbon dioxide release into the atmosphere, there have been worldwide investigations into green alternatives for making concrete environmentally friendlier and simultaneously to satisfy the development of infrastructure facilities. The use of fly ash as a component of cementitious binders is not new but when considering the specific case of alkaline activation and fly ash representing the only source for the binder formation, it necessitates a more complete understanding of its specific reactions during the alkaline activation process. Since the fly ash varies dramatically, not only from one source to another, but also from one batch to another even when provided by the same power plant, its chemistry in obtaining alkali-activated materials during the geopolymerisation process and the final mechanical properties are considered crucial for the performance of geopolymer concrete. This paper will provide a review of the experimental results concerning the physical and mechanical evaluation of the alkali-activated fly ash-based geopolymer materials, developed with different types of fly ash, for a better understanding of geopolymer concrete production control

    Parametric Studies Regarding the Development of Alkali-Activated Fly Ash-Based Geopolymer Concrete Using Romanian Local Raw Materials

    No full text
    Current research and development policies in the field of building materials, in the context of sustainable development, have the main objectives of increasing the safety and performance of the built environment at the same time as reducing pollution and its negative impact. Today, the idea that the sustainable city of the future should meet human needs and maintain a higher quality of life is worldwide unanimously accepted. The aim of this paper is to present results regarding the production of alkali-activated fly ash-based geopolymer concrete, a new, alternative material, produced using local available raw materials from Romania

    Experimental study regarding the influence of fibre to matrix compatibility on general performance of Fibre Engineered Cementitious Materials (FECM)

    No full text
    Fibre Engineered Cementitious Materials (FECM) represent composites with similar overall performance as Engineered Cementitious Composites (ECC), namely developing strain hardening behaviour under loading, which generates the material capacity of high deformability. The pattern of multiple microcracks successively developed under increasing loading is proved to be the key of material self-consolidating potential and ability to support loads after the first crack occurrence. The matrix to fibre compatibility is considered to be one essential parameter controlling the multiple micro-cracking pattern (MC) and consequently, the strain hardening effect in the material. Factors like fibre type and reinforcement percent in the mixture represent sensitive variables, with major influence for matrix to fibre compatibility and overall performance of the composite. Cement based materials, whose compositional heterogeneity traditionally represents a lack in their regular usage, can be valorised and designed to produce the width controlled cracking typology, beneficial for material behaviour. This paper presents an experimental study on the fibre to matrix compatibility effect in the FECM design and producing process. Several types of dispersed reinforcing typologies for FECM development are experimentally tested and analysed. The results confirm the importance of matrix to fibre compatibility in enhancing superior material performance: physical, mechanical and even durability (Self-Healing potential evaluation)

    Opportunities regarding the potential use of the self-cleaning concept within urban contemporary architecture in Romania

    No full text
    Contemporary urban architecture faces two important issues: degradation of buildings, caused by exposure to various environmental factors (air and water pollution, mainly generated by the fuels combustion used for transport and heating) and also the costs for repair, cleaning and maintenance of the buildings facades. Regarding the last mentioned aspects, recent research led to development of materials with self-cleaning potential and consequently pollution reduction. Self-cleaning concrete represents a state-of-the-art material with photocatalytic properties generated by the addition in its composition of nanomaterials like TiO2. Already known for its intrinsic photocatalytic character, TiO2 has the ability to catalyse the decomposition of organic substances like grease and dirt, facilitating their quick removal only by rainwater action. Therefore, a building façade made of TiO2-SiO2-containing material develops substantial savings regarding maintenance costs, water consumption and less detergents contamination due to its intrinsic super hydrophilic effect of the surface in the presence of UV radiation, leading to easy dirt removal when water reaches it. The aim of present paper is presenting the latest stage of worldwide research regarding the obtaining of self-cleaning concrete and also the possibility of adapting the concept to the actual Romanian architecture needs, as a sustainable solution for urban pollution reduction

    Modelling of the bending behaviour of double floor systems for different contact surfaces

    No full text
    In the practice of prefabricated concrete structures considerable surfaces of intermediate floors are constructed using double floor systems with prefabricated bottom layer and upper layer. This second layer is cast on site. The quality of the prefabricated concrete is often of superior class with respect to the monolithic layer. In the service state of the double floor system, important compressive stresses appear in the upper concrete layer. On the other hand, the bond quality between the concrete layers cast in successive stages raises questions especially in the case of hollow core floor units with no connecting reinforcement in-between. The paper presents results of the numerical models prepared for double floor elements having different thicknesses for the top and bottom layers, subjected to bending. Three situations have been studied: stepped top surface of the prefabricated slab with no connecting reinforcement, broom swept tracks on the prefabricated slab with no connecting reinforcement and broom swept tracks on the prefabricated slab with stirrups connecting the concrete layers. For each situation two different ratios of the thicknesses of the layers have been considered. The results are emphasizing the critical regions of the elements, the differences in crack development and in the behaviour resulting from surface preparation and use of connecting reinforcements

    Optimizing approach on Fibre Engineered Cementitious Materials with Self-Healing capacity (SH-FECM) by the use of slurry lime (SL) addition

    No full text
    SH-FECM (Fibre Engineered Cementitious Materials with Self-Healing capacity), developed at NIRD “URBAN-INCERC” Cluj-Napoca Branch in the last five years, are consistently based on Engineered Cementitious Composites (ECCs) concept, elaborated in the early nineties at Michigan University (USA). They all represent a cement-based typology of dispersed reinforcement composites able to develop high deformability by the means of multiple cracking pattern under loading, leading to a cumulative set of valuable material features: metal like behaviour when subjected to loads, brittle failure prevention, increased self-healing potential via the compositional design, etc. The process of development and constant improvement of the SH-FECMs represents a long term theoretical and experimental approach, aiming to establish the optimum raw materials (mostly locally available) compatibility within the cementitious matrix so that the composites would present superior performance under comparative evaluation. This paper presents the first results, evaluated as positive for both, fresh and hardened state materials, regarding the inclusion of Slurry Lime (SL) addition as replacement of the initial lime powder addition (L) in the material composition. The long-term effects are on ongoing investigation, but the initial results are clearly promising, starting from a better fresh state aspect and evaluating for faster setting time and improved early age mechanical behaviour. The beneficial effects are also in terms of economic and ecological aspects, considering that the used lime slurry (SL) addition represents an actual waste resulted from a local, natural stone processing factory. Its use as direct addition in the SH-FECMs mixtures could represent an efficient recycling and waste prevention action, with long term beneficial potential, in terms of Circular Economy principles
    corecore