8 research outputs found

    Integrative analysis of neuroblastoma by single-cell RNA sequencing identifies the NECTIN2-TIGIT axis as a target for immunotherapy

    Get PDF
    Pediatric patients with high-risk neuroblastoma have poor survival rates and urgently need more effective treatment options with less side effects. As novel and improved immunotherapies may fill this need, we dissected the immunoregulatory interactions in neuroblastoma by single-cell RNA-sequencing of 25 tumors (10 pre- and 15 post-chemotherapy, including 5 pairs) to identify strategies for optimizing immunotherapy efficacy. Neuroblastomas were infiltrated by NK, T and B cells, and immunosuppressive myeloid populations. NK cells showed reduced cytotoxicity and T cells had a dysfunctional profile. Interaction analysis revealed a vast immunoregulatory network and identified NECTIN2-TIGIT as a crucial immune checkpoint. Combined blockade of TIGIT and PD-L1 significantly reduced neuroblastoma growth, with complete responses in vivo. Moreover, addition of TIGIT blockade to standard relapse treatment in a chemotherapy-resistant Th-ALKF1174L/MYCN 129/SvJ syngeneic model significantly improved survival. Concluding, our integrative analysis of neuroblastomaā€™s vast immunoregulatory network provides novel targets and a rationale for immunotherapeutic combination strategies

    IgA antibody immunotherapy targeting GD2 is effective in preclinical neuroblastoma models

    Get PDF
    BACKGROUND: Immunotherapy targeting GD2 is very effective against high-risk neuroblastoma, though administration of anti-GD2 antibodies induces severe and dose-limiting neuropathic pain by binding GD2-expressing sensory neurons. Previously, the IgG1 ch14.18 (dinutuximab) antibody was reformatted into the IgA1 isotype, which abolishes neuropathic pain and induces efficient neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) via activation of the Fc alpha receptor (FcĪ±RI/CD89). METHODS: To generate an antibody suitable for clinical application, we engineered an IgA molecule (named IgA3.0 ch14.18) with increased stability, mutated glycosylation sites and substituted free (reactive) cysteines. The following mutations were introduced: N45.2G and P124R (CH1 domain), C92S, N120T, I121L and T122S (CH2 domain) and a deletion of the tail piece P131-Y148 (CH3 domain). IgA3.0 ch14.18 was evaluated in binding assays and in ADCC and antibody-dependent cellular phagocytosis (ADCP) assays with human, neuroblastoma patient and non-human primate effector cells. We performed mass spectrometry analysis of N-glycans and evaluated the impact of altered glycosylation in IgA3.0 ch14.18 on antibody half-life by performing pharmacokinetic (PK) studies in mice injected intravenously with 5ā€‰mg/kg antibody solution. A dose escalation study was performed to determine in vivo efficacy of IgA3.0 ch14.18 in an intraperitoneal mouse model using 9464D-GD2 neuroblastoma cells as well as in a subcutaneous human xenograft model using IMR32 neuroblastoma cells. Binding assays and PK studies were compared with one-way analysis of variance (ANOVA), ADCC and ADCP assays and in vivo tumor outgrowth with two-way ANOVA followed by Tukey's post-hoc test. RESULTS: ADCC and ADCP assays showed that particularly neutrophils and macrophages from healthy donors, non-human primates and patients with neuroblastoma are able to kill neuroblastoma tumor cells efficiently with IgA3.0 ch14.18. IgA3.0 ch14.18 contains a more favorable glycosylation pattern, corresponding to an increased antibody half-life in mice compared with IgA1 and IgA2. Furthermore, IgA3.0 ch14.18 penetrates neuroblastoma tumors in vivo and halts tumor outgrowth in both 9464D-GD2 and IMR32 long-term tumor models. CONCLUSIONS: IgA3.0 ch14.18 is a promising new therapy for neuroblastoma, showing (1) increased half-life compared to natural IgA antibodies, (2) increased protein stability enabling effortless production and purification, (3) potent CD89-mediated tumor killing in vitro by healthy subjects and patients with neuroblastoma and (4) antitumor efficacy in long-term mouse neuroblastoma models

    Strategies to Genetically Modulate Dendritic Cells to Potentiate Anti-Tumor Responses in Hematologic Malignancies

    No full text
    Dendritic cell (DC) vaccination has been investigated as a potential strategy to target hematologic malignancies, while generating sustained immunological responses to control potential future relapse. Nonetheless, few clinical trials have shown robust long-term efficacy. It has been suggested that a combination of surmountable shortcomings, such as selection of utilized DC subsets, DC loading and maturation strategies, as well as tumor-induced immunosuppression may be targeted to maximize anti-tumor responses of DC vaccines. Generation of DC from CD34+ hematopoietic stem and progenitor cells (HSPCs) may provide potential in patients undergoing allogeneic HSPC transplantations for hematologic malignancies. CD34+ HSPC from the graft can be genetically modified to optimize antigen presentation and to provide sufficient T cell stimulatory signals. We here describe beneficial (gene)-modifications that can be implemented in various processes in T cell activation by DC, among which major histocompatibility complex (MHC) class I and MHC class II presentation, DC maturation and migration, cross-presentation, co-stimulation, and immunosuppression to improve anti-tumor responses

    Efficient lentiviral transduction method to gene modify cord blood CD8+ TĀ cells for cancer therapy applications

    No full text
    Adoptive TĀ cell therapy utilizing tumor-specific autologous TĀ cells has shown promising results for cancer treatment. However, the limited numbers of autologous tumor-associated antigen (TAA)-specific TĀ cells and the functional aberrancies, due to disease progression or treatment, remain factors that may significantly limit the success of the therapy. The use of allogeneic TĀ cells, such as umbilical cord blood (CB) derived, overcomes these issues but requires gene modification to induce a robust and specific anti-tumor effect. CB TĀ cells are readily available in CB banks and show low toxicity, high proliferation rates, and increased anti-leukemic effect upon transfer. However, the combination of anti-tumor gene modification and preservation of advantageous immunological traits of CB TĀ cells represent major challenges for the harmonized production of TĀ cell therapy products. In this manuscript, we optimized a protocol for expansion and lentiviral vector (LV) transduction of CB CD8+ TĀ cells, achieving a transduction efficiency up to 83%. Timing of LV treatment, selection of culture media, and the use of different promoters were optimized in the transduction protocol. LentiBOOST was confirmed as a non-toxic transduction enhancer of CB CD8+ TĀ cells, with minor effects on the proliferation capacity and cell viability of the TĀ cells. Positively, the use of LentiBOOST does not affect the functionality of the cells, in the context of tumor cell recognition. Finally, CB CD8+ TĀ cells were more amenable to LV transduction than peripheral blood (PB) CD8+ TĀ cells and maintained a more naive phenotype. In conclusion, we show an efficient method to genetically modify CB CD8+ TĀ cells using LV, which is especially useful for off-the-shelf adoptive cell therapy products for cancer treatment

    Ī±Ī²-T Cells Engineered to Express Ī³Ī“-T Cell Receptors Can Kill Neuroblastoma Organoids Independent of MHC-I Expression

    Get PDF
    Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, Ī±Ī²-T cells engineered to express a defined Ī³Ī“-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNĪ³ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced Ī±Ī²-T cells or endogenous Ī³Ī“-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients

    Ī±Ī²-T Cells Engineered to Express Ī³Ī“-T Cell Receptors Can Kill Neuroblastoma Organoids Independent of MHC-I Expression

    Get PDF
    Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, Ī±Ī²-T cells engineered to express a defined Ī³Ī“-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNĪ³ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced Ī±Ī²-T cells or endogenous Ī³Ī“-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients

    Epigenetic modulation of neuroblastoma enhances T cell and NK cell immunogenicity by inducing a tumor-cell lineage switch

    No full text
    Background Immunotherapy in high-risk neuroblastoma (HR-NBL) does not live up to its full potential due to inadequate (adaptive) immune engagement caused by the extensive immunomodulatory capacity of HR-NBL. We aimed to tackle one of the most notable immunomodulatory processes in neuroblastoma (NBL), absence of major histocompatibility complex class I (MHC-I) surface expression, a process greatly limiting cytotoxic T cell engagement. We and others have previously shown that MHC-I expression can be induced by cytokine-driven immune modulation. Here, we aimed to identify tolerable pharmacological repurposing strategies to upregulate MHC-I expression and therewith enhance T cell immunogenicity in NBL.Methods Drug repurposing libraries were screened to identify compounds enhancing MHC-I surface expression in NBL cells using high-throughput flow cytometry analyses optimized for adherent cells. The effect of positive hits was confirmed in a panel of NBL cell lines and patient-derived organoids. Compound-treated NBL cell lines and organoids were cocultured with preferentially expressed antigen of melanoma (PRAME)-reactive tumor-specific T cells and healthy-donor natural killer (NK) cells to determine the in vitro effect on T cell and NK cell cytotoxicity. Additional immunomodulatory effects of histone deacetylase inhibitors (HDACi) were identified by transcriptome and translatome analysis of treated organoids.Results Drug library screening revealed MHC-I upregulation by inhibitor of apoptosis inhibitor (IAPi)- and HDACi drug classes. The effect of IAPi was limited due to repression of nuclear factor kappa B (NFĪŗB) pathway activity in NBL, while the MHC-I-modulating effect of HDACi was widely translatable to a panel of NBL cell lines and patient-derived organoids. Pretreatment of NBL cells with the HDACi entinostat enhanced the cytotoxic capacity of tumor-specific T cells against NBL in vitro, which coincided with increased expression of additional players regulating T cell cytotoxicity (eg, TAP1/2 and immunoproteasome subunits). Moreover, MICA and MICB, important in NK cell cytotoxicity, were also increased by entinostat exposure. Intriguingly, this increase in immunogenicity was accompanied by a shift toward a more mesenchymal NBL cell lineage.Conclusions This study indicates the potential of combining (immuno)therapy with HDACi to enhance both T cell-driven and NKcell-driven immune responses in patients with HR-NBL

    Uncovering the mode of action of engineered T cells in patient cancer organoids

    No full text
    Extending the success of cellular immunotherapies against blood cancers to the realm of solid tumors will require improved in vitro models that reveal therapeutic modes of action at the molecular level. Here we describe a system, called BEHAV3D, developed to study the dynamic interactions of immune cells and patient cancer organoids by means of imaging and transcriptomics. We apply BEHAV3D to live-track >150,000ā€‰engineered Tā€‰cells cultured with patient-derived, solid-tumor organoids, identifying a 'super engager' behavioral cluster comprising Tā€‰cells with potent serial killing capacity. Among other Tā€‰cell concepts we also study cancer metabolome-sensing engineered Tā€‰cells (TEGs) and detect behavior-specific gene signatures that include a group of 27ā€‰genes with no previously described Tā€‰cell function that are expressed by super engager killer TEGs. We further show that typeā€‰I interferon can prime resistant organoids for TEG-mediated killing. BEHAV3D is a promising tool for the characterization of behavioral-phenotypic heterogeneity of cellular immunotherapies and may support the optimization of personalized solid-tumor-targeting cell therapies
    corecore