8,140 research outputs found
Recommended from our members
Advances in Electron Beam Melting of Aluminum Alloys
The high thermal conductivity and melt pool optical reflectivity associated with
aluminum alloys can pose significant challenges for direct-metal SFF processes. The use
of SFF processes to produce aluminum parts is often not cost effective relative to CNC
machining for simple geometries. However, the use of SFF techniques for aluminum
alloys is justified for some applications such as aerospace forgings or high surface area
heat exchangers. This paper describes recent progress in processing aluminum alloys
using the Electron Beam Melting process. Structure and properties will be discussed, as
well challenges associated with high vapor pressure alloying elements such as zinc and
magnesium.Mechanical Engineerin
Recommended from our members
An Evaluation of Non-Stochastic Lattice Structures Fabricated Via Electron Beam Melting
Metal foam structures have many applications and can be used as structural supports, heat
exchangers, shock absorbers, and implant materials. Stochastic metal foams having different cell
sizes and densities have been commercially available for a number of years. This paper addresses
a different type of foams which are known as non-stochastic foams, or lattice structures. These
foams have a well defined repeating unit cell structure rather than the random cell structure in
commercially available stochastic foams. The paper reports on preliminary research on the
fabrication of non-stochastic Ti-6Al-4V alloy foams using the Electron Beam Melting process.
Behavior of the structures in compression, bending, and low cycle repeating load tests are
discussed, and recommendations about cell geometry and processing conditions are made.Mechanical Engineerin
Interference effects in two-photon ATI by multiple orders high harmonics with random or locked phases
We numerically study 2-photon processes using a set of harmonics from a
Ti:Sapphire laser and in particular interference effects in the Above Threshold
Ionization spectra. We compare the situation where the harmonic phases are
assumed locked to the case where they have a random distribution. Suggestions
for possible experiments, using realistic parameters are discussed.Comment: 11 pages, 13 figures, LaTe
Sign languages and sociolinguistic typology
This paper examines the possible relationship between proposed social determinants of morphological ‘complexity’ and how this contributes to linguistic diversity, specifically via the typological nature of the sign languages of deaf communities. We sketch how the notion of morphological complexity, as defined by Trudgill (2011), applies to sign languages. Using these criteria, sign languages appear to be languages with low to moderate levels of complexity. This may partly reflect the influence of key social characteristics of communities on the typological nature of languages. Although many deaf communities are relatively small and may involve dense social networks (both social characteristics that Trudgill claimed may lend themselves to linguistic ‘complexification’), the picture is complicated by the highly variable nature of the sign language acquisition for most deaf people, and the ongoing contact between native signers, hearing non-native signers, and those deaf individuals who only acquire sign languages in later childhood and early adulthood. These are all factors that may work against the emergence of linguistic complexification. The relationship between linguistic typology and these key social factors may lead to a better understanding of the nature of sign language grammar. This perspective stands in contrast to other work where sign languages are sometimes presented as having complex morphology despite being young languages (e.g., Aronoff et al., 2005); in some descriptions, the social determinants of morphological complexity have not received much attention, nor has the notion of complexity itself been specifically explored
On the gravitational production of superheavy dark matter
The dark matter in the universe can be in the form of a superheavy matter
species (WIMPZILLA). Several mechanisms have been proposed for the production
of WIMPZILLA particles during or immediately following the inflationary epoch.
Perhaps the most attractive mechanism is through gravitational particle
production, where particles are produced simply as a result of the expansion of
the universe. In this paper we present a detailed numerical calculation of
WIMPZILLA gravitational production in hybrid-inflation models and
natural-inflation models. Generalizing these findings, we also explore the
dependence of the gravitational production mechanism on various models of
inflation. We show that superheavy dark matter production seems to be robust,
with Omega_X h^2 ~ (M_X / (10^11 GeV))^2 (T_RH / (10^9 GeV)), so long as M_X <
H_I, where M_X is the WIMPZILLA mass, T_RH is the reheat temperature, and H_I
is the expansion rate of the universe during inflation.Comment: 26 pages, 7 figures; LaTeX; submitted to Physical Review D; minor
typographical error correcte
Dynamics of coupled bosonic systems with applications to preheating
Coupled, multi-field models of inflation can provide several attractive
features unavailable in the case of a single inflaton field. These models have
a rich dynamical structure resulting from the interaction of the fields and
their associated fluctuations. We present a formalism to study the
nonequilibrium dynamics of coupled scalar fields. This formalism solves the
problem of renormalizing interacting models in a transparent way using
dimensional regularization. The evolution is generated by a renormalized
effective Lagrangian which incorporates the dynamics of the mean fields and
their associated fluctuations at one-loop order. We apply our method to two
problems of physical interest: (i) a simple two-field model which exemplifies
applications to reheating in inflation, and (ii) a supersymmetric hybrid
inflation model. This second case is interesting because inflation terminates
via a smooth phase transition which gives rise to a spinodal instability in one
of the fields. We study the evolution of the zero mode of the fields and the
energy density transfer to the fluctuations from the mean fields. We conclude
that back reaction effects can be significant over a wide parameter range. In
particular for the supersymmetric hybrid model we find that particle production
can be suppressed due to these effects.Comment: 23 pages, 16 eps-figures, minor changes in the text, references
added, accepted for publication in PR
Building a better neonatal mouse model to understand infant respiratory syncytial virus disease
© 2015 You et al. Background: Respiratory syncytial virus (RSV) is the number one cause of lower respiratory tract infection in infants; and severe RSV infection in infants is associated with asthma development. Today, there are still no vaccines or specific antiviral therapies against RSV. The mechanisms of RSV pathogenesis in infants remain elusive. This is partly due to the fact that the largely-used mouse model is semi-permissive for RSV. The present study sought to determine if a better neonatal mouse model of RSV infection could be obtained using a chimeric virus in which the F protein of A2 strain was replaced with the F protein from the line 19 clinical isolate (rA2-19F). Methods: Five-day-old pups were infected with the standard laboratory strain A2 or rA2-19F and various immunological and pathophysiological parameters were measured at different time points post infection, including lung histology, bronchoalveolar lavage fluid (BALF) cellularity and cytokines, pulmonary T cell profile, and lung viral load. A cohort of infected neonates were allowed to mature to adulthood and reinfected. Pulmonary function, BALF cellularity and cytokines, and T cell profiles were measured at 6 days post reinfection. Results: The rA2-19F strain in neonatal mice caused substantial lung pathology including interstitial inflammation and airway mucus production, while A2 caused minimal inflammation and mucus production. Pulmonary inflammation was characterized by enhanced Th2 and reduced Th1 and effector CD8+ T cells compared to A2. As with primary infection, reinfection with rA2-19F induced similar but exaggerated Th2 and reduced Th1 and effector CD8+ T cell responses. These immune responses were associated with increased airway hyperreactivity, mucus hyperproduction and eosinophilia that was greater than that observed with A2 reinfection. Pulmonary viral load during primary infection was higher with rA2-19F than A2. Conclusions: Therefore, rA2-19F caused enhanced lung pathology and Th2 and reduced effector CD8+ T cell responses compared to A2 during initial infection in neonatal mice and these responses were exacerbated upon reinfection. The exact mechanism is unknown but appears to be associated with increased pulmonary viral load in rA2-19F vs. A2 infected neonatal lungs. The rA2-19F strain represents a better neonatal mouse model of RSV infection
Gas-to-Dust mass ratios in local galaxies over a 2 dex metallicity range
This paper analyses the behaviour of the gas-to-dust mass ratio (G/D) of
local Universe galaxies over a large metallicity range. We combine three
samples: the Dwarf Galaxy Survey, the KINGFISH survey and a subsample from
Galametz et al. (2011) totalling 126 galaxies, covering a 2 dex metallicity
range, with 30% of the sample with 12+log(O/H) < 8.0. The dust masses are
homogeneously determined with a semi-empirical dust model, including submm
constraints. The atomic and molecular gas masses are compiled from the
literature. Two XCO are used to estimate molecular gas masses: the Galactic
XCO, and a XCO depending on the metallicity (as Z^{-2}). Correlations with
morphological types, stellar masses, star formation rates and specific star
formation rates are discussed. The trend between G/D and metallicity is
empirically modelled using power-laws (slope of -1 and free) and a broken
power-law. We compare the evolution of the G/D with predictions from chemical
evolution models. We find that out of the five tested galactic parameters,
metallicity is the galactic property driving the observed G/D. The G/D versus
metallicity relation cannot be represented by a power-law with a slope of -1
over the whole metallicity range. The observed trend is steeper for
metallicities lower than ~ 8.0. A large scatter is observed in the G/D for a
given metallicity, with a dispersion of 0.37 dex in metallicity bins of ~0.1
dex. The broken power-law reproduces best the observed G/D and provides
estimates of the G/D that are accurate to a factor of 1.6. The good agreement
of the G/D and its scatter with the three tested chemical evolution models
shows that the scatter is intrinsic to galactic properties, reflecting the
different star formation histories, dust destruction efficiencies, dust grain
size distributions and chemical compositions across the sample. (abriged)Comment: 23 pages, 12 figures, accepted in Astronomy & Astrophysic
Time-dependent calculation of ionization in Potassium at mid-infrared wavelengths
We study the dynamics of the Potassium atom in the mid-infrared, high
intensity, short laser pulse regime. We ascertain numerical convergence by
comparing the results obtained by the direct expansion of the time-dependent
Schroedinger equation onto B-Splines, to those obtained by the eigenbasis
expansion method. We present ionization curves in the 12-, 13-, and 14-photon
ionization range for Potassium. The ionization curve of a scaled system, namely
Hydrogen starting from the 2s, is compared to the 12-photon results. In the
13-photon regime, a dynamic resonance is found and analyzed in some detail. The
results for all wavelengths and intensities, including Hydrogen, display a
clear plateau in the peak-heights of the low energy part of the Above Threshold
Ionization (ATI) spectrum, which scales with the ponderomotive energy Up, and
extends to 2.8 +- 0.5 Up.Comment: 15 two-column pages with 15 figures, 3 tables. Accepted for
publication in Phys. Rev A. Improved figures, language and punctuation, and
made minor corrections. We also added a comparison to the ADK theor
Nkx2-5 and Sarcospan genetically interact in the development of the muscular ventricular septum of the heart
The muscular ventricular septum separates the flow of oxygenated and de-oxygenated blood in air-breathing vertebrates. Defects within it, termed muscular ventricular septal defects (VSDs), are common, yet less is known about how they arise than rarer heart defects. Mutations of the cardiac transcription factor NKX2-5 cause cardiac malformations, including muscular VSDs. We describe here a genetic interaction between Nkx2-5 and Sarcospan (Sspn) that affects the risk of muscular VSD in mice. Sspn encodes a protein in the dystrophin-glycoprotein complex. Sspn knockout (Sspn(KO)) mice do not have heart defects, but Nkx2-5(+/−)/Sspn(KO) mutants have a higher incidence of muscular VSD than Nkx2-5(+/−) mice. Myofibers in the ventricular septum follow a stereotypical pattern that is disrupted around a muscular VSD. Subendocardial myofibers normally run in parallel along the left ventricular outflow tract, but in the Nkx2-5(+/−)/Sspn(KO) mutant they commonly deviate into the septum even in the absence of a muscular VSD. Thus, Nkx2-5 and Sspn act in a pathway that affects the alignment of myofibers during the development of the ventricular septum. The malalignment may be a consequence of a defect in the coalescence of trabeculae into the developing ventricular septum, which has been hypothesized to be the mechanistic basis of muscular VSDs
- …