8,474 research outputs found
Seeding of supercooled polyethylene with extended chain crystals
Seeding of supercooled polyethylene with extended chain crystal
Alien Registration- Cormier, Marie B. (Biddeford, York County)
https://digitalmaine.com/alien_docs/4604/thumbnail.jp
The BSL Sentence Reproduction Test: Exploring age of acquisition effects in British deaf adults
Here we present initial findings from a BSL sentence reproduction test, adapted from a test originally created for ASL (Hauser et al., 2008), with the aim of creating a screen that can be used to distinguish signers with native-like vs. non-native-like skills. The stimulus items, based on a set of 49 sentences from Hauser et al. (2008), included 40 BSL sentences varying in length and complexity, presented on video by a deaf native BSL signer. Participants were instructed to copy the signed sentence to camera, exactly as they saw it, regardless of phonological or lexical variants for the same concepts that they might prefer. Participants were 20 deaf adults: 10 deaf native signers, 5 deaf early learners first exposed to BSL between ages 2 and 6, and 5 late learners first exposed to BSL at age 11 or later. Responses were scored by a team of deaf and hearing sign language researchers. Responses which were agreed by all scorers as identical to the stimulus were given a score of 1; responses which included any phonological, morphological, lexical or syntactic deviations were given a score of 0 (except for a few specific, agreed-upon acceptable deviations). Results indicate that native signers scored significantly higher than non-native signers. For non-native signers there was no significant differences between early and late learners. We explore implications of these findings for use of the BSL-SRT as a screening test for assessing fluency in deaf adults and for exploring age-of-acquisition effects more generally. Hauser, P., Paludneviciene, R., Supalla, T., & Bavelier, D. (2008). American Sign Language – Sentence Reproduction Test: Development & Implications. In R. M. d. Quadros (Ed.), Sign Languages: Spinning and Unraveling the Past, Present and Future. TISLR 9, Forty-five Papers and Three Posters from the 9th Theoretical Issues in Sign Language Research Conference (pp. 155-167). Petrópolis/RJ. Brazil: Editora Arara Azul
Near infrared few-cycle pulses for high harmonic generation
We report on the development of tunable few-cycle pulses with central
wavelengths from 1.6 um to 2 um. Theses pulses were used as a proof of
principle for high harmonic generation in atomic and molecular targets. In
order to generate such pulses we produced a filament in a 4 bar krypton cell.
Spectral broadening by a factor of 2 to 3 of a 40 fs near infrared input pulse
was achieved. The spectrally broadened output pulses were then compressed by
fused silica plates down to the few-cycle regime close to the Fourier limit.
The auto-correlation of these pulses revealed durations of about 3 cycles for
all investigated central wavelengths. Pulses with a central wavelength of 1.7
um and up to 430 uJ energy per pulse were employed to generate high order
harmonics in Xe, Ar and N2. Moving to near infrared few-cycle pulses opens the
possibility to operate deeply in the non-perturbative regime with a Keldysh
parameter smaller than 1. Hence, this source is suitable for the study of the
non-adiabatic tunneling regime in most generating systems used for high order
harmonic generation and attoscience.Comment: 12 pages, 4 figure
Time-dependent calculation of ionization in Potassium at mid-infrared wavelengths
We study the dynamics of the Potassium atom in the mid-infrared, high
intensity, short laser pulse regime. We ascertain numerical convergence by
comparing the results obtained by the direct expansion of the time-dependent
Schroedinger equation onto B-Splines, to those obtained by the eigenbasis
expansion method. We present ionization curves in the 12-, 13-, and 14-photon
ionization range for Potassium. The ionization curve of a scaled system, namely
Hydrogen starting from the 2s, is compared to the 12-photon results. In the
13-photon regime, a dynamic resonance is found and analyzed in some detail. The
results for all wavelengths and intensities, including Hydrogen, display a
clear plateau in the peak-heights of the low energy part of the Above Threshold
Ionization (ATI) spectrum, which scales with the ponderomotive energy Up, and
extends to 2.8 +- 0.5 Up.Comment: 15 two-column pages with 15 figures, 3 tables. Accepted for
publication in Phys. Rev A. Improved figures, language and punctuation, and
made minor corrections. We also added a comparison to the ADK theor
Tunable Electron Multibunch Production in Plasma Wakefield Accelerators
Synchronized, independently tunable and focused J-class laser pulses are
used to release multiple electron populations via photo-ionization inside an
electron-beam driven plasma wave. By varying the laser foci in the laboratory
frame and the position of the underdense photocathodes in the co-moving frame,
the delays between the produced bunches and their energies are adjusted. The
resulting multibunches have ultra-high quality and brightness, allowing for
hitherto impossible bunch configurations such as spatially overlapping bunch
populations with strictly separated energies, which opens up a new regime for
light sources such as free-electron-lasers
Nkx2-5 and Sarcospan genetically interact in the development of the muscular ventricular septum of the heart
The muscular ventricular septum separates the flow of oxygenated and de-oxygenated blood in air-breathing vertebrates. Defects within it, termed muscular ventricular septal defects (VSDs), are common, yet less is known about how they arise than rarer heart defects. Mutations of the cardiac transcription factor NKX2-5 cause cardiac malformations, including muscular VSDs. We describe here a genetic interaction between Nkx2-5 and Sarcospan (Sspn) that affects the risk of muscular VSD in mice. Sspn encodes a protein in the dystrophin-glycoprotein complex. Sspn knockout (Sspn(KO)) mice do not have heart defects, but Nkx2-5(+/−)/Sspn(KO) mutants have a higher incidence of muscular VSD than Nkx2-5(+/−) mice. Myofibers in the ventricular septum follow a stereotypical pattern that is disrupted around a muscular VSD. Subendocardial myofibers normally run in parallel along the left ventricular outflow tract, but in the Nkx2-5(+/−)/Sspn(KO) mutant they commonly deviate into the septum even in the absence of a muscular VSD. Thus, Nkx2-5 and Sspn act in a pathway that affects the alignment of myofibers during the development of the ventricular septum. The malalignment may be a consequence of a defect in the coalescence of trabeculae into the developing ventricular septum, which has been hypothesized to be the mechanistic basis of muscular VSDs
A milestone toward understanding PDR properties in the extreme environment of LMC-30Dor
More complete knowledge of galaxy evolution requires understanding the
process of star formation and interaction between the interstellar radiation
field and the interstellar medium in galactic environments traversing a wide
range of physical parameter space. Here we focus on the impact of massive star
formation on the surrounding low metallicity ISM in 30 Doradus in the Large
Magellanic Cloud. A low metal abundance, as is the case of some galaxies of the
early universe, results in less ultra-violet shielding for the formation of the
molecular gas necessary for star formation to proceed. The half-solar
metallicity gas in this region is strongly irradiated by the super star cluster
R136, making it an ideal laboratory to study the structure of the ISM in an
extreme environment. Our spatially resolved study investigates the gas heating
and cooling mechanisms, particularly in the photo-dissociation regions where
the chemistry and thermal balance are regulated by far-ultraviolet photons (6
eV< h\nu <13.6 eV).
We present Herschel observations of far-infrared fine-structure lines
obtained with PACS and SPIRE/FTS. We have combined atomic fine-structure lines
from Herschel and Spitzer observations with ground-based CO data to provide
diagnostics on the properties and the structure of the gas by modeling it with
the Meudon PDR code. We derive the spatial distribution of the radiation field,
the pressure, the size, and the filling factor of the photodissociated gas and
molecular clouds. We find a range of pressure of ~ 10^5 - 1.7x10^6 cm^{-3} K
and a range of incident radiation field G_UV ~ 10^2 - 2.5x10^4 through PDR
modeling. Assuming a plane-parallel geometry and a uniform medium, we find a
total extinction of 1-3 mag , which correspond to a PDR cloud size of 0.2 to
3pc, with small CO depth scale of 0.06 to 0.5pc. We also determine the three
dimensional structure of the gas. (Abridged)Comment: 20 pages, 23 figures, accepted in A&
A plasma wakefield acceleration experiment using CLARA beam
We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL
test facility CLARA (Compact Linear Accelerator for Research and Applications)
at Daresbury Laboratory. The idea is to use the relativistic electron beam from
CLARA, to investigate some key issues in electron beam transport and in
electron beam driven plasma wakefield acceleration, e.g. high gradient plasma
wakefield excitation driven by a relativistic electron bunch, two bunch
experiment for CLARA beam energy doubling, high transformer ratio, long bunch
self-modulation and some other advanced beam dynamics issues. This paper
presents the feasibility studies of electron beam transport to meet the
requirements for beam driven wakefield acceleration and presents the plasma
wakefield simulation results based on CLARA beam parameters. Other possible
experiments which can be conducted at the PARS beam line are also discussed
- …