50 research outputs found

    Autophagy in Cystic Fibrosis Pathogenesis and Treatment

    Get PDF
    Cystic fibrosis (CF) is a fatal, genetic disorder that critically affects the lungs and is directly caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in defective CFTR function. In epithelial cells, the CFTR channel conducts anions and plays a critical role in regulating the volume and composition of airway surface liquid. This thin layer of aqueous fluid and mucus covering the airway surface facilitates mucociliary clearance, bacterial killing, and epithelial cell homeostasis. The importance of the CFTR channel in macrophages was revealed in recent work that demonstrated that defective CFTR function is accompanied by impaired innate immune responses to specific infections. Notably, most CF-associated infections are caused by microbes that are cleared by autophagy in healthy cells. Autophagy is a highly regulated biological process that provides energy during periods of stress and starvation. Autophagy clears pathogens, inflammatory molecules, and dysfunctional protein aggregates within macrophages. However, this process is impaired in CF patients and CF mice, as their cells exhibit limited autophagy activity. The mechanisms linking a malfunctioning ion channel function to the defective autophagy remains unclear. In this chapter, we describe and discuss the recent findings indicating the presence of several mechanisms leading to defective autophagy in CF cells. Thus, these novel data advance our understanding of mechanisms underlying the pathobiology of CF and provide a new therapeutic platform for restoring CFTR function and autophagy in patients with CF

    Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR

    Get PDF
    CFTR plays a key role in maintenance of lung fluid homeostasis. Cigarette smoke decreases CFTR expression in the lung but neither the mechanisms leading to CFTR loss, nor potential ways to prevent its loss have been identified to date

    Low Temperature and Chemical Rescue Affect Molecular Proximity of F508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Epithelial Sodium Channel (ENaC)

    Get PDF
    An imbalance of chloride and sodium ion transport in several epithelia is a feature of cystic fibrosis (CF), an inherited disease that is a consequence of mutations in the cftr gene. The cftr gene codes for a Cl(-) channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Some mutations in this gene cause the balance between Cl(-) secretion and Na(+) absorption to be disturbed in the airways; Cl(-) secretion is impaired, whereas Na(+) absorption is elevated. Enhanced Na(+) absorption through the epithelial sodium channel (ENaC) is attributed to the failure of mutated CFTR to restrict ENaC-mediated Na(+) transport. The mechanism of this regulation is controversial. Recently, we have found evidence for a close association of wild type (WT) CFTR and WT ENaC, further underscoring the role of ENaC along with CFTR in the pathophysiology of CF airway disease. In this study, we have examined the association of ENaC subunits with mutated ΔF508-CFTR, the most common mutation in CF. Deletion of phenylalanine at position 508 (ΔF508) prevents proper processing and targeting of CFTR to the plasma membrane. When ΔF508-CFTR and ENaC subunits were co-expressed in HEK293T cells, we found that individual ENaC subunits could be co-immunoprecipitated with ΔF508-CFTR, much like WT CFTR. However, when we evaluated the ΔF508-CFTR and ENaC association using fluorescence resonance energy transfer (FRET), FRET efficiencies were not significantly different from negative controls, suggesting that ΔF508-CFTR and ENaC are not in close proximity to each other under basal conditions. However, with partial correction of ΔF508-CFTR misprocessing by low temperature and chemical rescue, leading to surface expression as assessed by total internal reflection fluorescence (TIRF) microscopy, we observed a positive FRET signal. Our findings suggest that the ΔF508 mutation alters the close association of CFTR and ENaC

    Accumulation of metals in GOLD4 COPD lungs is associated with decreased CFTR levels

    Get PDF
    Abstract Background The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that primarily resides in airway epithelial cells. Decreased CFTR expression and/or function lead to impaired airway surface liquid (ASL) volume homeostasis, resulting in accumulation of mucus, reduced clearance of bacteria, and chronic infection and inflammation. Methods Expression of CFTR and the cigarette smoke metal content were assessed in lung samples of controls and COPD patients with established GOLD stage 4. CFTR protein and mRNA were quantified by immunohistochemistry and quantitative RT-PCR, respectively. Metals present in lung samples were quantified by ICP-AES. The effect of cigarette smoke on down-regulation of CFTR expression and function was assessed using primary human airway epithelial cells. The role of leading metal(s) found in lung samples of GOLD 4 COPD patients involved in the alteration of CFTR was confirmed by exposing human bronchial epithelial cells 16HBE14o- to metal-depleted cigarette smoke extracts. Results We found that CFTR expression is reduced in the lungs of GOLD 4 COPD patients, especially in bronchial epithelial cells. Assessment of metals present in lung samples revealed that cadmium and manganese were significantly higher in GOLD 4 COPD patients when compared to control smokers (GOLD 0). Primary human airway epithelial cells exposed to cigarette smoke resulted in decreased expression of CFTR protein and reduced airway surface liquid height. 16HBE14o-cells exposed to cigarette smoke also exhibited reduced levels of CFTR protein and mRNA. Removal and/or addition of metals to cigarette smoke extracts before exposure established their role in decrease of CFTR in airway epithelial cells. Conclusions CFTR expression is reduced in the lungs of patients with severe COPD. This effect is associated with the accumulation of cadmium and manganese suggesting a role for these metals in the pathogenesis of COPD

    MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung.

    Get PDF
    The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that plays a critical role in the lung by maintaining fluid homeostasis. Absence or malfunction of CFTR leads to Cystic Fibrosis, a disease characterized by chronic infection and inflammation. We recently reported that air pollutants such as cigarette smoke and cadmium negatively regulate the expression of CFTR by affecting several steps in the biogenesis of CFTR protein. MicroRNAs (miRNAs) have recently received a great deal of attention as both biomarkers and therapeutics due to their ability to regulate multiple genes. Here, we show that cigarette smoke and cadmium up-regulate the expression of two miRNAs (miR-101 and miR-144) that are predicted to target CFTR in human bronchial epithelial cells. When premature miR-101 and miR-144 were transfected in human airway epithelial cells, they directly targeted the CFTR 3'UTR and suppressed the expression of the CFTR protein. Since miR-101 was highly up-regulated by cigarette smoke in vitro, we investigated whether such increase also occurred in vivo. Mice exposed to cigarette smoke for 4 weeks demonstrated an up-regulation of miR-101 and suppression of CFTR protein in their lungs. Finally, we show that miR-101 is highly expressed in lung samples from patients with severe chronic obstructive pulmonary disease (COPD) when compared to control patients. Taken together, these results suggest that chronic cigarette smoking up-regulates miR-101 and that this miRNA could contribute to suppression of CFTR in the lungs of COPD patients
    corecore