29 research outputs found

    On the origin and evolutionary diversification of beetle horns

    Full text link
    Many scarab beetles produce rigid projections from the body called horns. The exaggerated sizes of these structures and the staggering diversity of their forms have impressed biologists for centuries. Recent comparative studies using DNA sequence-based phylogenies have begun to reconstruct the historical patterns of beetle horn evolution. At the same time, developmental genetic experiments have begun to elucidate how beetle horns grow and how horn growth is modulated in response to environmental variables, such as nutrition. We bring together these two perspectives to show that they converge on very similar conclusions regarding beetle evolution. Horns do not appear to be difficult structures to gain or lose, and they can diverge both dramatically and rapidly in form. Although much of this work is still preliminary, we use available information to propose a conceptual developmental model for the major trajectories of beetle horn evolution. We illustrate putative mechanisms underlying the evolutionary origin of horns and the evolution of horn location, shape, allometry, and dimorphism

    Data from: Is diversification in male reproductive traits driven by evolutionary trade-offs between weapons and nuptial gifts?

    Full text link
    Many male animals have evolved exaggerated traits that they use in combat with rival males to gain access to females and secure their reproductive success. But some male animals invest in nuptial gifts that gains them access to females. Both these reproductive strategies are costly in that resources are needed to produce the weapon or nuptial gift. In closely related species where both weapons and nuptial gifts are present, little is known about the potential evolutionary trade-off faced by males that have these traits. In this study, we use dobsonflies (order Megaloptera, family Corydalidae, subfamily Corydalinae) to examine the presence and absence of enlarged male weapons versus nuptial gifts within and among species. Many dobsonfly species are sexually dimorphic, and males possess extremely enlarged mandibles that they use in battles, whereas in other species, males produce large nuptial gifts that increase female fecundity. In our study, we show that male accessory gland size strongly correlates with nuptial gift size and that when male weapons are large, nuptial gifts are small and vice versa. We mapped weapons and nuptial gifts onto a phylogeny we constructed of 57 species of dobsonflies. Our among-species comparison shows that large nuptial gift production evolved in many species of dobsonfly but is absent from those with exaggerated weapons. This pattern supports the potential explanation that the trade-off in resource allocation between weapons and nuptial gifts is important in driving the diversity of male mating strategies seen in the dobsonflies, whereas reduced male–male competition in the species producing large spermatophores could be an alternative explanation on their loss of male weapons. Our results shed new light on the evolutionary interplay of multiple sexually selected traits in animals

    Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae

    Full text link
    Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest

    Selection of Reference Genes for Expression Studies of Xenobiotic Adaptation in Tetranychus urticae

    Full text link
    Quantitative real-time PCR (qRT-PCR) is an extensively used, high-throughput method to analyze transcriptional expression of genes of interest. An appropriate normalization strategy with reliable reference genes is required for calculating gene expression across diverse experimental conditions. In this study, we aim to identify the most stable reference genes for expression studies of xenobiotic adaptation in Tetranychus urticae, an extremely polyphagous herbivore causing significant yield reduction of agriculture. We chose eight commonly used housekeeping genes as candidates. The qRT-PCR expression data for these genes were evaluated from seven populations: a susceptible and three acaricide resistant populations feeding on lima beans, and three other susceptible populations which had been shifted host from lima beans to three other plant species. The stability of the candidate reference genes was then assessed using four different algorithms (comparative ΔCt method, geNorm, NormFinder, and BestKeeper). Additionally, we used an online web-based tool (RefFinder) to assign an overall final rank for each candidate gene. Our study found that CycA and Rp49 are best for investigating gene expression in acaricide susceptible and resistant populations. GAPDH, Rp49, and Rpl18 are best for host plant shift studies. And GAPDH and Rp49 were the most stable reference genes when investigating gene expression under changes in both experimental conditions. These results will facilitate research in revealing molecular mechanisms underlying the xenobiotic adaptation of this notorious agricultural pest

    Ecological Trade-offs between Migration and Reproduction Are Mediated by the Nutrition-Sensitive Insulin-Signaling Pathway

    Full text link
    Crowding and changes in food availability are two critical environmental conditions that impact an animal's trajectory toward either migration or reproduction. Many insects facing this challenge have evolved wing polyphenisms. When conditions favor reproduction, wing polyphenic species produce adults that either have no wings or short, non-functional wings. Facultative wing growth reflects a physiological and evolutionary trade-off between migration and reproduction, triggered by environmental conditions. How environmental cues are transduced to produce these alternative forms, and their associated ecological shift from migration to reproduction, remains an important unsolved problem in evolutionary ecology. The brown planthopper, a wing polymorphic insect exhibiting strong trade-offs in investment between migration and reproduction, is one of the most serious rice pests in Asia. In this study, we investigated the function of four genes in the insulin-signaling pathway known to couple nutrition with growth, PI3 Kinase (PI3K), PDK1, Akt (Protein Kinase B), and the forkhead gene FOXO. Using a combination of RNA interference and pharmacological inhibitor treatment, we show that all four genes contribute to tissue level regulation of wing polymorphic development in this insect. As predicted, silencing of the NlPI3K, NlAkt and NlPDK1 through dsRNA and with the pharmacological inhibitor Perifosine resulted in short-winged brown planthoppers, whereas knockdown of NlFOXO resulted in long-winged planthoppers. Morphometric analyses confirm that phenotypes from our manipulations mimic what would be found in nature, i.e., major parameters such as bristle number, wing area and body weight are not significantly different from non-experimental animals. Taken together, these data implicate the insulin-signaling pathway in the transduction of environmental factors into condition-dependent patterns of wing growth in insects

    Identification of Lygus hesperus by DNA barcoding reveals insignificant levels of genetic structure among distant and habitat diverse populations

    Get PDF
    The western tarnished plant bug Lygus hesperus is an economically important pest that belongs to a complex of morphologically similar species that makes identification problematic. The present study provides evidence for the use of DNA barcodes from populations of L. hesperus from the western United States of America for accurate identification. This study reports DNA barcodes for 134 individuals of the western tarnished plant bug from alfalfa and strawberry agricultural fields in the western United States of America. Sequence divergence estimates of <3% reveal that morphologically variable individuals presumed to be L. hesperus were accurately identified. Paired estimates of F(st) and subsequent estimates of gene flow show that geographically distinct populations of L. hesperus are genetically similar. Therefore, our results support and reinforce the relatively recent (<100 years) migration of the western tarnished plant bug into agricultural habitats across the western United States. This study reveals that despite wide host plant usage and phenotypically plastic morphological traits, the commonly recognized western tarnished plant bug belongs to a single species, Lygus hesperus. In addition, no significant genetic structure was found for the geographically diverse populations of western tarnished plant bug used in this study

    Dataset S1-2

    Full text link
    Dataset S1. Male and female traits by prothorax length (PTL): the log-log relationships between PTL and mandible length (ML) or flange length (FL), and those between PTL and wing length (WL). The male internal accessory gland size in weight is also shown; Dataset S2. Combined dataset for phylogenetic analysis
    corecore