42 research outputs found
Rank two quadratic pairs and surface group representations
Let be a compact Riemann surface. A quadratic pair on consists of a
holomorphic vector bundle with a quadratic form which takes values in fixed
line bundle. We show that the moduli spaces of quadratic pairs of rank 2 are
connected under some constraints on their topological invariants. As an
application of our results we determine the connected components of the
-character variety of .Comment: 37 pages, 1 figur
Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces
Higgs bundles and non-abelian Hodge theory provide holomorphic methods with
which to study the moduli spaces of surface group representations in a
reductive Lie group G. In this paper we survey the case in which G is the
isometry group of a classical Hermitian symmetric space of non-compact type.
Using Morse theory on the moduli spaces of Higgs bundles, we compute the number
of connected components of the moduli space of representations with maximal
Toledo invariant.Comment: v2: added due credits to the work of Burger, Iozzi and Wienhard. v3:
corrected count of connected components for G=SU(p,q) (p \neq q); added due
credits to the work of Xia and Markman-Xia; minor corrections and
clarifications. 31 page