33 research outputs found

    Tumour microvessel density as predictor of chemotherapy response in breast cancer patients

    Get PDF
    The aim of this study was to evaluate the predictive value of intratumoural microvessel density in breast cancer. We studied immunohistochemically primary tumours of 104 patients with metastasised breast cancer who took part in a randomised multicentre trial comparing docetaxel to sequential methotrexate and 5-fluorouracil. Vessels were highlighted with factor VIII staining and counted microscopically. Microvessel density was compared with clinical response to chemotherapy and patient survival. The microvessel density of the primary tumour was not significantly associated with patient's response to chemotherapy, time to progression or overall survival in the whole patient population or in the docetaxel or methotrexate and 5-fluorouracil groups. However, disease-free survival was longer in patients with low microvessel density (P=0.01). These findings suggest that microvessel density of the primary tumour cannot be used as a predictive marker for chemotherapy response in advanced breast cancer

    Literature on fabrication of tungsten for application in pyrochemical processing of spent nuclear fuels

    Get PDF
    The pyrochemical processing of nuclear fuels requires crucibles, stirrers, and transfer tubing that will withstand the temperature and the chemical attack from molten salts and metals used in the process. This report summarizes the literature that pertains to fabrication (joining, chemical vapor deposition, plasma spraying, forming, and spinning) is the main theme. This report also summarizes a sampling of literature on molbdenum and the work previously performed at Argonne National Laboratory on other container materials used for pyrochemical processing of spent nuclear fuels

    Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr Isolated from Wetland sediment

    Get PDF
    Two bacterial strains Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr were isolated and identified from enrichment cultures using dimethyl isophthalate (DMI) as the sole source of carbon and energy, and mangrove sediment as an inoculum. DMI was rapidly transformed by K. oxytoca Sc in the culture with formation of monomethyl isophthalate (MMI), which accumulated in the culture medium. M. mesophilicum Sr, incapable of utilizing DMI, showed high capability of degrading MMI to a transitory intermediate isophthalic acid (IPA), which was further mineralized by this strain. The biochemical pathway of DMI degradation by these two bacteria in a consortium was proposed: DMI to MMI by K. oxytoca Sc, MMI to IPA by M. mesophilicum Sr, and IPA by both K. oxytoca Sc and M. mesophilicum Sr based on the identified degradation intermediates. The consortium comprising K. oxytoca Sc and M. mesophilicum Sr was effective in mineralization of DMI. The results suggest that complete degradation of environmental pollutant DMI requires the biochemical cooperation between different microorganisms of the mangrove environment. © 2006 Elsevier B.V. All rights reserved.link_to_subscribed_fulltex
    corecore