305 research outputs found

    Momentum space tomographic imaging of photoelectrons

    Full text link
    We apply tomography, a general method for reconstructing 3-D distributions from multiple projections, to reconstruct the momentum distribution of electrons produced via strong field photoionization. The projections are obtained by rotating the electron distribution via the polarization of the ionizing laser beam and recording a momentum spectrum at each angle with a 2-D velocity map imaging spectrometer. For linearly polarized light the tomographic reconstruction agrees with the distribution obtained using an Abel inversion. Electron tomography, which can be applied to any polarization, will simplify the technology of electron imaging. The method can be directly generalized to other charged particles.Comment: Accepted by J. Phys.

    Mechanisms of two-color laser-induced field-free molecular orientation

    Get PDF
    Two mechanisms of two-color (\omega + 2\omega) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g. on the order of || > 0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanism lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally

    Alignment dependent enhancement of the photo-electron cutoff for multi-photon ionization of molecules

    Get PDF
    The multiphoton ionization rate of molecules depends on the alignment of the molecular axis with respect to the ionizing laser polarization. By studying molecular frame photo-electron angular distributions from N2_2, O2_2 and benzene, we illustrate how the angle-dependent ionization rate affects the photo-electron cutoff energy. We find alignment can enhance the high energy cutoff of the photo-electron spectrum when probing along a nodal plane or when ionization is otherwise suppressed. This is supported by calculations using a tunneling model with a single ion state.Comment: 4 pages, 4 figure

    Relativistic semiclassical approach in strong-field nonlinear photoionization

    Get PDF
    Nonlinear relativistic ionization phenomena induced by a strong laser radiation with elliptically polarization are considered. The starting point is the classical relativistic action for a free electron moving in the electromagnetic field created by a strong laser beam. The application of the relativistic action to the classical barrier-suppression ionization is briefly discussed. Further the relativistic version of the Landau-Dykhne formula is employed to consider the semiclassical sub-barrier ionization. Simple analytical expressions have been found for: (i) the rates of the strong-field nonlinear ionization including relativistic initial and final state effects; (ii) the most probable value of the components of the photoelectron final state momentum; (iii) the most probable direction of photoelectron emission and (iv) the distribution of the photoelectron momentum near its maximum value.Comment: 13 pages, 3 figures, to be published in Phys. Rev.

    Effect of electron exchange on atomic ionization in a strong electric field

    Full text link
    Hartree-Fock atom in a strong electric static field is considered. It is demonstrated that exchange between outer and inner electrons, taken into account by the so-called Fock term affects strongly the long-range behavior of the inner electron wave function. As a result, it dramatically increases its probability to be ionized. A simple model is analyzed demonstrating that the decay probability, compared to the case of a local (Hartree) atomic potential, increases by many orders of magnitude. As a result of such increase, the ratio of inner to outer electrons ionization probability became not too small. It is essential that the effect of exchange upon probability of inner electron ionization by strong electric field is proportional to the square of the number of outer electrons. It signals that in clusters the inner electron ionization by strong field, the very fact of which is manifested by e.g. high energy quanta emission, has to be essentially increased as compared to this process in gaseous atomic objects.Comment: 7 pages, 1 figur

    Relativistic photoelectron spectra in the ionization of atoms by elliptically polarized light

    Get PDF
    Relativistic tunnel ionization of atoms by intense, elliptically polarized light is considered. The relativistic version of the Landau-Dykhne formula is employed. The general analytical expression is obtained for the relativistic photoelectron spectra. The most probable angle of electron emission, the angular distribution near this angle, the position of the maximum and the width of the energy spectrum are calculated. In the weak field limit we obtain the familiar non-relativistic results. For the case of circular polarization our analytical results are in agreement with recent derivations of Krainov [V.P. Krainov, J. Phys. B, {\bf 32}, 1607 (1999)].Comment: 8 pages, 2 figures, accepted for publication in Journal of Physics

    Double Ionization by Strong Elliptically Polarized Laser Pulses

    Full text link
    We join the tribute to Professor N.B. Delone in this memorial issue by presenting the results of new calculations on the effects of ellipticity on double ionization by short and strong near-optical laser pulses.Comment: 3 pages, 4 figures, accepted in Professor N.B. Delone's memorial issu

    Coherent manipulation of charge qubits in double quantum dots

    Full text link
    The coherent time evolution of electrons in double quantum dots induced by fast bias-voltage switches is studied theoretically. As it was shown experimentally, such driven double quantum dots are potential devices for controlled manipulation of charge qubits. By numerically solving a quantum master equation we obtain the energy- and time-resolved electron transfer through the device which resembles the measured data. The observed oscillations are found to depend on the level offset of the two dots during the manipulation and, most surprisingly, also the on initialization stage. By means of an analytical expression, obtained from a large-bias model, we can understand the prominent features of these oscillations seen in both the experimental data and the numerical results. These findings strengthen the common interpretation in terms of a coherent transfer of electrons between the dots.Comment: 18 pages, 4 figure

    Many-electron tunneling in atoms

    Get PDF
    A theoretical derivation is given for the formula describing N-electron ionization of atom by a dc field and laser radiation in tunneling regime. Numerical examples are presented for noble gases atoms.Comment: 11 pages, 1 EPS figure, submitted to JETP (Jan 99

    Theory of dressed states in quantum optics

    Get PDF
    The dual Dyson series [M.Frasca, Phys. Rev. A {\bf 58}, 3439 (1998)], is used to develop a general perturbative method for the study of atom-field interaction in quantum optics. In fact, both Dyson series and its dual, through renormalization group methods to remove secular terms from the perturbation series, give the opportunity of a full study of the solution of the Schr\"{o}dinger equation in different ranges of the parameters of the given hamiltonian. In view of recent experiments with strong laser fields, this approach seems well-suited to give a clarification and an improvement of the applications of the dressed states as currently done through the eigenstates of the atom-field interaction, showing that these are just the leading order of the dual Dyson series when the Hamiltonian is expressed in the interaction picture. In order to exploit the method at the best, a study is accomplished of the well-known Jaynes-Cummings model in the rotating wave approximation, whose exact solution is known, comparing the perturbative solutions obtained by the Dyson series and its dual with the same approximations obtained by Taylor expanding the exact solution. Finally, a full perturbative study of high-order harmonic generation is given obtaining, through analytical expressions, a clear account of the power spectrum using a two-level model, even if the method can be successfully applied to a more general model that can account for ionization too. The analysis shows that to account for the power spectrum it is needed to go to first order in the perturbative analysis. The spectrum obtained gives a way to measure experimentally the shift of the energy levels of the atom interacting with the laser field by looking at the shifting of hyper-Raman lines.Comment: Revtex, 17 page
    • …
    corecore