6 research outputs found

    Subdural hematoma following traumatic brain injury causes a secondary decline in brain free magnesium concentration

    No full text
    Copyright © 2001 Mary Ann Liebert, Inc.A number of studies have demonstrated that neurologic motor and cognitive deficits induced by traumatic brain injury (TBI) can be attenuated with administration of magnesium salts. However, many severe traumatic brain injuries have a significant hematoma that develops subsequent to the primary events, and it is unclear whether magnesium salts are effective in this situation. In the present study, an impact-acceleration rodent model of TBI was used to produce an injury that causes an extensive subdural hematoma in over 50% of injured animals. At 30 min after TBI, rats were randomly administered 250 µmoles/kg intravenous MgSO4 or equal volume saline before being monitored by magnetic resonance spectroscopy for 8 h to determine brain intracellular free magnesium concentration. Animals were then assessed for neurologic motor deficits over 1 week using a rotarod device, followed by postmortem examination for presence of subdural hematoma. Animals with subdural hematoma treated with MgSO4 showed no improvement in motor outcome when compared to nontreated controls. Animals with no visible subdural hematoma demonstrated a significant improvement (p < 0.05 by ANOVA) in rotarod scores with MgSO4 treatment. Brain free magnesium concentration in the magnesium treated/hematoma group demonstrated a biphasic decline made up of an immediate initial decline, recovery of brain magnesium levels with MgSO4 treatment, and then a significant second magnesium decline (p < 0.05). Such a secondary decline did not occur in the Mg treated/no hematoma animals. Our results suggest that development of a subdural hematoma following TBI results in a decline in brain magnesium, even after bolus administration of magnesium salts. Such effects of hematoma development will need to be considered in trials examining efficacy of magnesium salts as an intervention following TBI.Deanne L. Heath, Robert Vin

    Glucose-sensing mechanisms in pancreatic β-cells

    No full text
    The appropriate secretion of insulin from pancreatic β-cells is critically important to the maintenance of energy homeostasis. The β-cells must sense and respond suitably to postprandial increases of blood glucose, and perturbation of glucose-sensing in these cells can lead to hypoglycaemia or hyperglycaemias and ultimately diabetes. Here, we review β-cell glucose-sensing with a particular focus on the regulation of cellular excitability and exocytosis. We examine in turn: (i) the generation of metabolic signalling molecules; (ii) the regulation of β-cell membrane potential; and (iii) insulin granule dynamics and exocytosis. We further discuss the role of well known and putative candidate metabolic signals as regulators of insulin secretion
    corecore