86 research outputs found

    Slocum gliders provide accurate near real-time estimates of baleen whale presence from human-reviewed passive acoustic detection information

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Bonnell, J., Corkeron, P. J., Van Parijs, S. M., Hotchkin, C., Hodges, B. A., Thornton, J. B., Mensi, B. L., & Bruner, S. M. Slocum gliders provide accurate near real-time estimates of baleen whale presence from human-reviewed passive acoustic detection information. Frontiers in Marine Science, 7, (2020):100, doi:10.3389/fmars.2020.00100.Mitigating the effects of human activities on marine mammals often depends on monitoring animal occurrence over long time scales, large spatial scales, and in real time. Passive acoustics, particularly from autonomous vehicles, is a promising approach to meeting this need. We have previously developed the capability to record, detect, classify, and transmit to shore information about the tonal sounds of baleen whales in near real time from long-endurance ocean gliders. We have recently developed a protocol by which a human analyst reviews this information to determine the presence of marine mammals, and the results of this review are automatically posted to a publicly accessible website, sent directly to interested parties via email or text, and made available to stakeholders via a number of public and private digital applications. We evaluated the performance of this system during two 3.75-month Slocum glider deployments in the southwestern Gulf of Maine during the spring seasons of 2015 and 2016. Near real-time detections of humpback, fin, sei, and North Atlantic right whales were compared to detections of these species from simultaneously recorded audio. Data from another 2016 glider deployment in the same area were also used to compare results between three different analysts to determine repeatability of results both among and within analysts. False detection (occurrence) rates on daily time scales were 0% for all species. Daily missed detection rates ranged from 17 to 24%. Agreement between two trained novice analysts and an experienced analyst was greater than 95% for fin, sei, and right whales, while agreement was 83–89% for humpback whales owing to the more subjective process for detecting this species. Our results indicate that the presence of baleen whales can be accurately determined using information about tonal sounds transmitted in near real-time from Slocum gliders. The system is being used operationally to monitor baleen whales in United States, Canadian, and Chilean waters, and has been particularly useful for monitoring the critically endangered North Atlantic right whale throughout the northwestern Atlantic Ocean.Funding for this project was provided by the Environmental Security Technology Certification Program of the U.S. Department of Defense and the U.S. Navy’s Living Marine Resources Program

    Investigating the thermal physiology of critically endangered North Atlantic right whales Eubalaena glacialis via aerial infrared thermography

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lonati, G., Zitterbart, D. P., Miller, C. A., Corkeron, P. J., Murphy, C. T., & Moore, M. J. Investigating the thermal physiology of critically endangered North Atlantic right whales Eubalaena glacialis via aerial infrared thermography. Endangered Species Research, 48, (2022): 139–154, https://doi.org/10.3354/esr01193.The Critically Endangered status of North Atlantic right whales Eubalaena glacialis (NARWs) warrants the development of new, less invasive technology to monitor the health of individuals. Combined with advancements in remotely piloted aircraft systems (RPAS, commonly ‘drones’), infrared thermography (IRT) is being increasingly used to detect and count marine mammals and study their physiology. We conducted RPAS-based IRT over NARWs in Cape Cod Bay, MA, USA, in 2017 and 2018. Observations demonstrated 3 particularly useful applications of RPAS-based IRT to study large whales: (1) exploring patterns of cranial heat loss and providing insight into the physiological mechanisms that produce these patterns; (2) tracking subsurface individuals in real-time (depending on the thermal stratification of the water column) using cold surface water anomalies resulting from fluke upstrokes; and (3) detecting natural changes in superficial blood circulation or diagnosing pathology based on heat anomalies on post-cranial body surfaces. These qualitative applications present a new, important opportunity to study, monitor, and conserve large whales, particularly rare and at-risk species such as NARWs. Despite the challenges of using this technology in aquatic environments, the applications of RPAS-based IRT for monitoring the health and behavior of endangered marine mammals, including the collection of quantitative data on thermal physiology, will continue to diversify.All activities were conducted under NOAA permit 18355-01 and were approved by Woods Hole Oceanographic Institution’s Institutional Animal Care and Use Committee (IACUC). The RPAS pilot-in-command was certified through the United States Federal Aviation Admin-istration. We thank Amy Knowlton (Anderson Cabot Center for Ocean Life at the New England Aquarium) for photo-identifying individual North Atlantic right whales and Rocky Geyer (Woods Hole Oceanographic Institution) for providing and interpreting water temperature data relatedto the observations of thermal flukeprints (courtesy of the Massachusetts Water Resources Authority). We also appreciate constructive conversations with Iain Kerr (Ocean Alliance), Chris Zadra (Ocean Alliance), and Joy Reidenberg (Icahn School of Medicine at Mount Sinai). Funding was provided by a Woods Hole Oceanographic Research Opportunity grant, the North Pond Foundation, and NMFS NA14OAR4320158

    Near real-time detection of low-frequency baleen whale calls from an autonomous surface vehicle: implementation, evaluation, and remaining challenges

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Ball, K., Partan, J., Pelletier, L., Bonnell, J., Hotchkin, C., Corkeron, P. J., & Van Parijs, S. M. Near real-time detection of low-frequency baleen whale calls from an autonomous surface vehicle: implementation, evaluation, and remaining challenges. Journal of the Acoustical Society of America, 149(5), (2021): 2950-2962, https://doi.org/10.1121/10.0004817.Mitigation of threats posed to marine mammals by human activities can be greatly improved with a better understanding of animal occurrence in real time. Recent advancements have enabled low-power passive acoustic systems to be integrated into long-endurance autonomous platforms for persistent near real-time monitoring of marine mammals via the sounds they produce. Here, the integration of a passive acoustic instrument capable of real-time detection and classification of low-frequency (LF) tonal sounds with a Liquid Robotics wave glider is reported. The goal of the integration was to enable monitoring of LF calls produced by baleen whales over periods of several months. Mechanical noises produced by the platform were significantly reduced by lubricating moving parts with polytetrafluoroethylene, incorporating rubber and springs to decelerate moving parts and shock mounting hydrophones. Flow noise was reduced with the development of a 21-element hydrophone array. Surface noise produced by breaking waves was not mitigated despite experimentation with baffles. Compared to a well-characterized moored passive acoustic monitoring buoy, the system greatly underestimated the occurrence of sei, fin, and North Atlantic right whales during a 37-d deployment, and therefore is not suitable in its current configuration for use in scientific or management applications for these species at this time.Funding for this project was provided by the Environmental Security Technology Certification Program of the U.S. Department of Defense and the U.S. Navy's Living Marine Resources Program

    Entanglements of North Atlantic right whales increase as their distribution shifts in response to climate change: The need for a new management paradigm [poster]

    Get PDF
    Presented at 2019: World Marine Mammal Science Conference, Barcelona, Spain, December 9-12, 2019.Detection rate of severely injured or entangled NARWs began to increase around 2004 - 2007.We thank the North Atlantic Right Whale Consortium for data curation and dissemination, and the Atlantic Large Whale Disentanglement Network for entanglement sighting information

    Flecainide overdose – support using an intra-aortic balloon pump

    Get PDF
    BACKGROUND: Flecainide is an antiarrhythmic agent which is being used increasingly for the management of super-ventricular arrhythmias. Overdose with flecainide is frequently fatal with mortality reported as high as 22% due to arrhythmias, myocardial depression and conduction defects leading to electro-mechanical dissociation and asytole. Supportive measures are often required during the case and previously have included inotropes, extracorporeal membrane oxygenation and cardiopulmonary bypass. CASE PRESENTATION: A 47 year old lady presented to the emergency department with a four hour history of severe central chest pain. Her ECG showed atrial fibrillation and broad QRS complexes with a sine wave appearance. She had a past history of paroxysmal atrial fibrillation and significant psychiatric history. Following thrombolysis for a presumed myocardial infarction she developed cardiogenic shock with severely impaired left ventricular function. An intra-aortic balloon pump was inserted and coronary angiography demonstrated normal coronary arteries. With inotropic support she improved over 48 hours, with both her QRS duration and left ventricular function returning to normal. Biochemical testing following her discharge demonstrated significantly elevated levels of flecainide. CONCLUSION: The use of an intra-aortic balloon pump is a useful supportive measure during the acute phase of flecainide overdose associated with severe myocardial depression

    The recovery of North Atlantic right whales, Eubalaena glacialis, has been constrained by human-caused mortality

    Get PDF
    North Atlantic right whales (NARW), Eubalaena glacialis, were nearly exterminated by historical whaling. Their abundance slowly increased up until 2010, to a maximum of fewer than 500 whales, and since then they have been in decline. We assessed the extent to which the relatively slow increase demonstrated by NARW was intrinsic, and how much could be due to anthropogenic impacts. In order to do so, we first compared calf counts of three populations of Southern right whales (SRW), E. australis, with that of NARW, over the period 1992–2016. By this index, the annual rate of increase of NARW was approximately one-third of that of SRW. Next we constructed a population projection model for female NARW, using the highest annual survival estimates available from recent mark–resight analysis, and assuming a four-year calving interval. The model results indicated an intrinsic rate of increase of 4% per year, approximately twice that observed, and that adult female mortality is the main factor influencing this rate. Necropsy records demonstrate that anthropogenic mortality is the primary cause of known mortality of NARW. Anthropogenic mortality and morbidity has limited the recovery of NARW, and baseline conditions prior to their recent decline were already jeopardizing NARW recovery.The North Atlantic Right Whale Catalog is maintained with support from ongoing contracts from NOAA Fisheries. J.B. has been funded since at least 1993 by various Australian Government Environment Agencies, since 2015 the National Environment Marine Sciences Program, Marine Diversity Hub. K.F. thanks the Island Foundation for support during the collection of the South African aerial survey data between 2012 and 2015. Various institutions funded the South African aerial surveys over the data collection period, including Moby Dick Rum, Exclusive Trust, the Island Foundation, the National Research Foundation, members of the Offshore Petroleum Association of South Africa and the International Whaling Commission. The Brazilian Right Whale Catalog have been supported by several companies through funding to Projeto Baleia Franca, in particular PETROBRAS Brazilian Oil Company and Santos Brasil Company. V.R. thanks the many individuals and non-profit organizations who funded the 47 years of aerial surveys of the Argentine right whales, in particular Sarah Haney for her support in many of our lean years. V.R.’s research permits were issued annually by the Direccio´n de Fauna y Flora Silvestre and the Subsecretarı´a de Turismo y A ´ reas Protegidas of Chubut Province, Argentina.http://rsos.royalsocietypublishing.orgam2019Mammal Research InstituteZoology and Entomolog

    Caribbean Sea Soundscapes: Monitoring Humpback Whales, Biological Sounds, Geological Events, and Anthropogenic Impacts of Vessel Noise

    Get PDF
    Assessing marine soundscapes provides an understanding of the biological, geological and anthropogenic composition of a habitat, including species diversity, community composition, and human impacts. For this study, nine acoustic recorders were deployed between December 2016 and June 2017 off six Caribbean islands in several Marine Parks: the Dominican Republic (DR), St. Martin (SM), Guadeloupe east and west (GE, GW), Martinique (MA), Aruba (AR), and Bonaire (BO). Humpback whale song was recorded at five sites on four islands (DR, SM, GE, GW, and MA) and occurred on 49–93% of recording days. Song appeared first at the DR site and began 4–6 weeks later at GE, GW, and MA. No song was heard in AR and BO, the southernmost islands. A 2-week period was examined for the hourly presence of vessel noise and the number and duration of ship passages. Hourly vessel presence ranged from low (20% – DR, 30% – SM), medium (52% – MA, 54% – BO, 77% – GE) to near continuous (99% – GW; 100% – AR). Diurnal patterns were observed at BO, GE, and MA with few to no vessels present during night time hours, possibly reflecting the activity of recreational craft and fishing vessels. At the DR and GW sites, vessel traffic was ubiquitous for most of the day, likely reflecting heavy cruise ship and container ship presence. Soundscapes were diverse across islands with persistent fish choruses, sporadic sperm whale (Physeter macrocephalus) and dolphin (Delphinidae) presence at BO, minke whales (Balaenoptera acutorostrata) from late December to late February at MA and an earthquake recorded across all sites. These analyses provide an important first step in characterizing the health and species richness in Caribbean marine parks and demonstrate a surprising high anthropogenic foot print. Vessel traffic in particular contributes adversely to marine soundscapes, masking marine mammal sounds, potentially changing typical animal behavior and raising the risk of ship strike

    Population comparison of right whale body condition reveals poor state of the North Atlantic right whale

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Christiansen, F., Dawson, S. M., Durban, J. W., Fearnbach, H., Miller, C. A., Bejder, L., Uhart, M., Sironi, M., Corkeron, P., Rayment, W., Leunissen, E., Haria, E., Ward, R., Warick, H. A., Kerr, I., Lynn, M. S., Pettis, H. M., & Moore, M. J. Population comparison of right whale body condition reveals poor state of the North Atlantic right whale. Marine Ecology Progress Series, 640, (2020): 1-16, doi:10.3354/meps13299.The North Atlantic right whale Eubalaena glacialis (NARW), currently numbering <410 individuals, is on a trajectory to extinction. Although direct mortality from ship strikes and fishing gear entanglements remain the major threats to the population, reproductive failure, resulting from poor body condition and sublethal chronic entanglement stress, is believed to play a crucial role in the population decline. Using photogrammetry from unmanned aerial vehicles, we conducted the largest population assessment of right whale body condition to date, to determine if the condition of NARWs was poorer than 3 seemingly healthy (i.e. growing) populations of southern right whales E. australis (SRWs) in Argentina, Australia and New Zealand. We found that NARW juveniles, adults and lactating females all had lower body condition scores compared to the SRW populations. While some of the difference could be the result of genetic isolation and adaptations to local environmental conditions, the magnitude suggests that NARWs are in poor condition, which could be suppressing their growth, survival, age of sexual maturation and calving rates. NARW calves were found to be in good condition. Their body length, however, was strongly determined by the body condition of their mothers, suggesting that the poor condition of lactating NARW females may cause a reduction in calf growth rates. This could potentially lead to a reduction in calf survival or an increase in female calving intervals. Hence, the poor body condition of individuals within the NARW population is of major concern for its future viability.North Atlantic: NOAA NA14OAR4320158; Australia: US Office of Naval Research Marine Mammals Program (Award No. N00014-17-1-3018), the World Wildlife Fund for Nature Australia and a Murdoch University School of Veterinary and Life Sciences Small Grant Award; New Zealand: New Zealand Antarctic Research institute (NZARI 2016-1-4), Otago University and NZ Whale and Dolphin Trust; Argentina: National Geographic Society (Grant number: NGS-379R-18)

    Persistent near real-time passive acoustic monitoring for baleen whales from a moored buoy: System description and evaluation

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baumgartner, M. F., Bonnell, J., Van Parijs, S. M., Corkeron, P. J., Hotchkin, C., Ball, K., Pelletier, L., Partan, J., Peters, D., Kemp, J., Pietro, J., Newhall, K., Stokes, A., Cole, T. V. N., Quintana, E., & Kraus, S. D. Persistent near real-time passive acoustic monitoring for baleen whales from a moored buoy: System description and evaluation. Methods in Ecology and Evolution, 10(9), (2019): 1476-1489, doi: 10.1111/2041-210X.13244.1. Managing interactions between human activities and marine mammals often relies on an understanding of the real‐time distribution or occurrence of animals. Visual surveys typically cannot provide persistent monitoring because of expense and weather limitations, and while passive acoustic recorders can monitor continuously, the data they collect are often not accessible until the recorder is recovered. 2. We have developed a moored passive acoustic monitoring system that provides near real‐time occurrence estimates for humpback, sei, fin and North Atlantic right whales from a single site for a year, and makes those occurrence estimates available via a publicly accessible website, email and text messages, a smartphone/tablet app and the U.S. Coast Guard's maritime domain awareness software. We evaluated this system using a buoy deployed off the coast of Massachusetts during 2015–2016 and redeployed again during 2016–2017. Near real‐time estimates of whale occurrence were compared to simultaneously collected archived audio as well as whale sightings collected near the buoy by aerial surveys. 3. False detection rates for right, humpback and sei whales were 0% and nearly 0% for fin whales, whereas missed detection rates at daily time scales were modest (12%–42%). Missed detections were significantly associated with low calling rates for all species. We observed strong associations between right whale visual sightings and near real‐time acoustic detections over a monitoring range 30–40 km and temporal scales of 24–48 hr, suggesting that silent animals were not especially problematic for estimating occurrence of right whales in the study area. There was no association between acoustic detections and visual sightings of humpback whales. 4. The moored buoy has been used to reduce the risk of ship strikes for right whales in a U.S. Coast Guard gunnery range, and can be applied to other mitigation applications.We thank Annamaria Izzi, Danielle Cholewiak and Genevieve Davis of the NOAA NEFSC for assistance in developing the analyst protocol. We are grateful to the NOAA NEFSC aerial survey observers (Leah Crowe, Pete Duley, Jen Gatzke, Allison Henry, Christin Khan and Karen Vale) and the NEAq aerial survey observers (Angela Bostwick, Marianna Hagbloom and Paul Nagelkirk). Danielle Cholewiak and three anonymous reviewers provided constructive criticism on earlier drafts of the manuscript. Funding for this project was provided by the NOAA NEFSC, NOAA Advanced Sampling Technology Work Group, Environmental Security Technology Certification Program of the U.S. Department of Defense, the U.S. Navy's Living Marine Resources Program, Massachusetts Clean Energy Center and the Bureau of Ocean Energy Management. Funding from NOAA was facilitated by the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158
    corecore