812 research outputs found
Recommended from our members
Overview and status of the 0.5NA EUV microfield exposure tool at Berkeley Lab
A 0.5-NA extreme ultraviolet micro-field exposure tool has been installed and commissioned at beamline 12.0.1.4 of the Advanced Light Source synchrotron facility at Lawrence Berkeley National Laboratory. Commissioning has demonstrated a patterning resolution of 13 nm half-pitch with annular 0.35-0.55 illumination; a patterning resolution of 8 nm half-pitch with annular 0.1-0.2 illumination; critical dimension (CD) uniformity of 0.7 nm 1σ on 16 nm nominal CD across 80% of the 200 um x 30 um aberration corrected field of view; aerial image vibration relative to the wafer of 0.75 nn RMS and focus control and focus stepping better than 15 nm
Lateral mobility of L-type calcium channels in synaptic terminals of retinal bipolar cells.
PURPOSE: Efficient and precise release of glutamate from retinal bipolar cells is ensured by the positioning of L-type Ca(2+) channels close to release sites at the base of the synaptic ribbon. We investigated whether Ca(2+) channels at bipolar cell ribbon synapses are fixed in position or capable of moving in the membrane.
METHODS: We tracked the movements of individual L-type Ca(2+) channels in bipolar cell terminals after labeling channels with quantum dots (QDs) attached to α(2)δ(4) accessory Ca(2+) channel subunits via intermediary antibodies.
RESULTS: We found that individual Ca(2+) channels moved within a confined domain of 0.13-0.15 μm(2) in bipolar cell terminals, similar to ultrastructural estimates of the surface area of the active zone beneath the ribbon. Disruption of actin expanded the confinement domain indicating that cytoskeletal interactions help to confine channels at the synapse, but the relatively large diffusion coefficients of 0.3-0.45 μm(2)/s suggest that channels are not directly anchored to actin. Unlike photoreceptor synapses, removing membrane cholesterol did not change domain size, indicating that lipid rafts are not required to confine Ca(2+) channels at bipolar cell ribbon synapses.
CONCLUSIONS: The ability of Ca(2+) channels to move within the presynaptic active zone suggests that regulating channel mobility may affect release from bipolar cell terminals
Iridium oxide based potassium sensitive microprobe with anti-fouling properties
Here, we present a new type of potassium sensor which possesses a combination of potassium sensing and anti-biofouling properties. Two major advancements were required to be developed with respect to the current technology; Firstly, design of surface linkers for this type of coating that would allow deposition of the potassiumselective coating on Iridium (Ir) wire or micro-spike surface for chronic monitoring for the first time. As this has never been done before, even for flat Ir surfaces, the material’s small dimensions and surface area render this challenging. Secondly, the task of transformation of the coated wire into a sensor. Here we develop and bench-test the electrode sensitivity to potassium and determine its specificity to potassium versus sodium interference. For this purpose we also present a novel characterisation platform which enables dynamic characterization of the sensor including step and sinusoidal response to analyte changes. The developed sensor shows good sensitivity (<1 mM concentrations of K+ ions) and selectivity (up to approximately 10 times more sensitive to K+ than Na+ concentration changes, depending on concentrations and ionic environment). In addition, the sensor displays very good mechanical properties for the small diameter involved (sub 150 μm), which in combination with anti-biofouling properties, renders it an excellent potential tool for the chemical monitoring of neural and other physiological activities using implantable devices
Calmodulin enhances ribbon replenishment and shapes filtering of synaptic transmission by cone photoreceptors.
At the first synapse in the vertebrate visual pathway, light-evoked changes in photoreceptor membrane potential alter the rate of glutamate release onto second-order retinal neurons. This process depends on the synaptic ribbon, a specialized structure found at various sensory synapses, to provide a supply of primed vesicles for release. Calcium (Ca(2+)) accelerates the replenishment of vesicles at cone ribbon synapses, but the mechanisms underlying this acceleration and its functional implications for vision are unknown. We studied vesicle replenishment using paired whole-cell recordings of cones and postsynaptic neurons in tiger salamander retinas and found that it involves two kinetic mechanisms, the faster of which was diminished by calmodulin (CaM) inhibitors. We developed an analytical model that can be applied to both conventional and ribbon synapses and showed that vesicle resupply is limited by a simple time constant, τ = 1/(Dρδs), where D is the vesicle diffusion coefficient, δ is the vesicle diameter, ρ is the vesicle density, and s is the probability of vesicle attachment. The combination of electrophysiological measurements, modeling, and total internal reflection fluorescence microscopy of single synaptic vesicles suggested that CaM speeds replenishment by enhancing vesicle attachment to the ribbon. Using electroretinogram and whole-cell recordings of light responses, we found that enhanced replenishment improves the ability of cone synapses to signal darkness after brief flashes of light and enhances the amplitude of responses to higher-frequency stimuli. By accelerating the resupply of vesicles to the ribbon, CaM extends the temporal range of synaptic transmission, allowing cones to transmit higher-frequency visual information to downstream neurons. Thus, the ability of the visual system to encode time-varying stimuli is shaped by the dynamics of vesicle replenishment at photoreceptor synaptic ribbons
Hemodynamic Effects of Entry and Exit Tear Size in Aortic Dissection Evaluated with In Vitro Magnetic Resonance Imaging and Fluid-Structure Interaction Simulation
Understanding the complex interplay between morphologic and hemodynamic
features in aortic dissection is critical for risk stratification and for the
development of individualized therapy. This work evaluates the effects of entry
and exit tear size on the hemodynamics in type B aortic dissection by comparing
fluid-structure interaction (FSI) simulations with in vitro 4D-flow magnetic
resonance imaging (MRI). A baseline patient-specific 3D-printed model and two
variants with modified tear size (smaller entry tear, smaller exit tear) were
embedded into a flow- and pressure-controlled setup to perform MRI as well as
12-point catheter-based pressure measurements. The same models defined the wall
and fluid domains for FSI simulations, for which boundary conditions were
matched with measured data. Results showed exceptionally well matched complex
flow patterns between 4D-flow MRI and FSI simulations. Compared to the baseline
model, false lumen flow volume decreased with either a smaller entry tear
(-17.8 and -18.5 %, for FSI simulation and 4D-flow MRI, respectively) or
smaller exit tear (-16.0 and -17.3 %). True to false lumen pressure difference
(initially 11.0 and 7.9 mmHg, for FSI simulation and catheter-based pressure
measurements, respectively) increased with a smaller entry tear (28.9 and 14.6
mmHg), and became negative with a smaller exit tear (-20.6 and -13.2 mmHg).
This work establishes quantitative and qualitative effects of entry or exit
tear size on hemodynamics in aortic dissection, with particularly notable
impact observed on FL pressurization. FSI simulations demonstrate acceptable
qualitative and quantitative agreement with flow imaging, supporting its
deployment in clinical studies.Comment: Judith Zimmermann and Kathrin B\"aumler contributed equall
Sub-clinical assessment of atopic dermatitis severity using angiographic optical coherence tomography
Measurement of sub-clinical atopic dermatitis (AD) is important for determining how long therapies should be continued after clinical clearance of visible AD lesions. An important biomarker of sub-clinical AD is epidermal hypertrophy, the structural measures of which often make optical coherence tomography (OCT) challenging due to the lack of a clearly delineated dermal-epidermal junction in AD patients. Alternatively, angiographic OCT measurements of vascular depth and morphology may represent a robust biomarker for quantifying the severity of clinical and sub-clinical AD. To investigate this, angiographic data sets were acquired from 32 patients with a range of AD severities. Deeper vascular layers within skin were found to correlate with increasing clinical severity. Furthermore, for AD patients exhibiting no clinical symptoms, the superficial plexus depth was found to be significantly deeper than healthy patients at both the elbow (p = 0.04) and knee (p < 0.001), suggesting that sub-clinical changes in severity can be detected. Furthermore, the morphology of vessels appeared altered in patients with severe AD, with significantly different vessel diameter, length, density and fractal dimension. These metrics provide valuable insight into the sub-clinical severity of the condition, allowing the effects of treatments to be monitored past the point of clinical remission
- …