38 research outputs found
Universe from vacuum in loop-string cosmology
In this paper we study the description of the Universe based on the low
energy superstring theory modified by the Loop Quantum Gravity effects.This
approach was proposed by De Risi et al. in the Phys. Rev. D {\bf 76} (2007)
103531. We show that in the contrast with the string motivated pre-Big Bang
scenario, the cosmological realisation of the -duality transformation is not
necessary to avoid an initial singularity. In the model considered the universe
starts its evolution in the vacuum phase at time . In this phase
the scale factor , energy density and coupling of the
interactions . After this stage the universe evolves to the
non-singular hot Big Bang phase . Then the
standard classical universe emerges. During the whole evolution the scale
factor increases monotonically. We solve this model analytically. We also
propose and solve numerically the model with an additional dilaton potential in
which the universe starts the evolution from the asymptotically free vacuum
phase and then evolves non-singularly to the emerging dark energy
dominated phase with the saturated coupling constant .Comment: JHEP3 LaTeX class, 19 pages, 9 figures, v2: added some comments and
references, v3: new numerical result added, new figure
Numerical loop quantum cosmology: an overview
A brief review of various numerical techniques used in loop quantum cosmology
and results is presented. These include the way extensive numerical simulations
shed insights on the resolution of classical singularities, resulting in the
key prediction of the bounce at the Planck scale in different models, and the
numerical methods used to analyze the properties of the quantum difference
operator and the von Neumann stability issues. Using the quantization of a
massless scalar field in an isotropic spacetime as a template, an attempt is
made to highlight the complementarity of different methods to gain
understanding of the new physics emerging from the quantum theory. Open
directions which need to be explored with more refined numerical methods are
discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and
Quantum Gravity special issue on Non-Astrophysical Numerical Relativit
Loop Quantum Cosmology: A cosmological theory with a view
Loop Quantum Gravity is a background independent, nonperturbative approach to
the quantization of General Relativity. Its application to models of interest
in cosmology and astrophysics, known as Loop Quantum Cosmology, has led to new
and exciting views of the gravitational phenomena that took place in the early
universe, or that occur in spacetime regions where Einstein's theory predicts
singularities. We provide a brief introduction to the bases of Loop Quantum
Cosmology and summarize the most important results obtained in homogeneous
scenarios. These results include a mechanism to avoid the cosmological Big Bang
singularity and replace it with a Big Bounce, as well as the existence of
processes which favor inflation. We also discuss the extension of the frame of
Loop Quantum Cosmology to inhomogeneous settings.Comment: 17 pages, to appear in Proceedings of Spanish Relativity Meeting 2010
(ERE 2010) held in Granada, Spai
Semiclassical States in Quantum Cosmology: Bianchi I Coherent States
We study coherent states for Bianchi type I cosmological models, as examples
of semiclassical states for time-reparametrization invariant systems. This
simple model allows us to study explicitly the relationship between exact
semiclassical states in the kinematical Hilbert space and corresponding ones in
the physical Hilbert space, which we construct here using the group averaging
technique. We find that it is possible to construct good semiclassical physical
states by such a procedure in this model; we also discuss the sense in which
the original kinematical states may be a good approximation to the physical
ones, and the situations in which this is the case. In addition, these models
can be deparametrized in a natural way, and we study the effect of time
evolution on an "intrinsic" coherent state in the reduced phase space, in order
to estimate the time for this state to spread significantly.Comment: 21 pages, 1 figure; Version to be published in CQG; The discussion
has been slightly reorganized, two references added, and some typos correcte
Loop Quantum Cosmology: A Status Report
The goal of this article is to provide an overview of the current state of
the art in loop quantum cosmology for three sets of audiences: young
researchers interested in entering this area; the quantum gravity community in
general; and, cosmologists who wish to apply loop quantum cosmology to probe
modifications in the standard paradigm of the early universe. An effort has
been made to streamline the material so that, as described at the end of
section I, each of these communities can read only the sections they are most
interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical
and Quantum Gravity. Typos corrected, clarifications and references adde
The status of Quantum Geometry in the dynamical sector of Loop Quantum Cosmology
This letter is motivated by the recent papers by Dittrich and Thiemann and,
respectively, by Rovelli discussing the status of Quantum Geometry in the
dynamical sector of Loop Quantum Gravity. Since the papers consider model
examples, we also study the issue in the case of an example, namely on the Loop
Quantum Cosmology model of space-isotropic universe. We derive the
Rovelli-Thiemann-Ditrich partial observables corresponding to the quantum
geometry operators of LQC in both Hilbert spaces: the kinematical one and,
respectively, the physical Hilbert space of solutions to the quantum
constraints. We find, that Quantum Geometry can be used to characterize the
physical solutions, and the operators of quantum geometry preserve many of
their kinematical properties.Comment: Latex, 12 page
Inverse volume corrections to emergent tachyonic inflation in loop quantum cosmology
The emergent model in the context of loop quantum cosmology with a tachyon
scalar field is studied. We find that there is a center equilibrium point in
the semiclassical region and a saddle point in the classical region. If the
potential of the tachyon field satisfies some conditions, the universe can stay
at the center equilibrium point past-eternally and then oscillate infinitely
around this point with the tachyon climbing up its potential. Once the
potential reaches a critical value, these two equilibrium points coincide with
each other and the oscillation phase is broken by an emergent inflation. In
order to obtain a successful emergent tachyon inflation, a constraint on
of tachyon is required.Comment: 13 pages, 5 figures, a reference adde
Gravitational Geometric Phase in the Presence of Torsion
We investigate the relativistic and non-relativistic quantum dynamics of a
neutral spin-1/2 particle submitted an external electromagnetic field in the
presence of a cosmic dislocation. We analyze the explicit contribution of the
torsion in the geometric phase acquired in the dynamic of this neutral
spinorial particle. We discuss the influence of the torsion in the relativistic
geometric phase. Using the Foldy-Wouthuysen approximation, the non-relativistic
quantum dynamics are studied and the influence of the torsion in the
Aharonov-Casher and He-McKellar-Wilkens effects are discussed.Comment: 14 pages, no figur