57 research outputs found

    HELP-based matrices for stimuli-responsive controlled release of bioactive compounds

    Get PDF
    Direct delivery of bioactive substances to the sites of injury represents a key issue for therapies based on regenerative medicine and tissue repair [1]. Protein derived hydrogels represent an interesting system for this purpose because they possess several features that make them suitable to this purpose. A method for preparation of hydrogel matrices based on Human Elastin-like Polypeptide (HELP) has been set up [2]. HELPs are a family of elastin-like recombinant biopolymers modeled after the most regularly repeated domain in human tropoelastin, retaining peculiar properties as self-assembling and thermoresponsive behavior [3]. In this study we assayed two elastolytic activities from different sources to test their potential to specifically degrade the HELP matrix

    Dynamics of Saccharomyces cerevisiae strains isolated from vine bark in vineyard: Influence of plant age and strain presence during grape must spontaneous fermentations

    Get PDF
    In this study, two vineyards of different age were chosen. During three years, a sampling campaign was performed for isolating vineyard-associated Saccharomyces cerevisiae (S. cerevisiae) strains. Bark portions and, when present, grape bunches were regularly collected from the same vine plants during the overall sampling period. Each bark portion was added to a synthetic must, while each grape bunch was manually crushed, and fermentations were run to isolate S. cerevisiae strains. All collected yeasts were identified at different species and strain levels to evaluate the genetic variability of S. cerevisiae strains in the two vineyards and strains dynamics. Moreover, bark-associated strains were compared with those isolated from spontaneous fermentations of grapes collected during the two harvests. Regarding the youngest vineyard, no S. cerevisiae was identified on bark and grape surface, highlighting the importance of vine age on yeast colonization. Results reported the isolation of S. cerevisiae from vine bark of the old vineyard at all sampling times, regardless of the presence of the grape bunch. Therefore, this environment can be considered an alternative ecological niche that permanently hosts S. cerevisiae. Bark-associated strains were not found on grape bunches and during pilot-scale vinifications, indicating no significative strain transfer from vine bark to the grape must. Commercial starters were identified as well both in vineyards and during vinifications

    Influence of the mannoproteins of different strains of Starmerella bacillaris used in single and sequential fermentations on foamability, tartaric and protein stabilities of wines

    Get PDF
    Aim: In this work, seven strains of Starmerella bacillaris were analysed for their ability to release polysaccharides during alcoholic fermentation (AF), both in single-strain and in sequential AF together with Saccharomyces cerevisiae. Methods and results: A synthetic polysaccharide-free must was used to characterise the mannoproteins (MPs) released. The MPs were quantified, characterised in terms of carbohydrate composition, and tested to assess their ability to reduce protein and tartrate instabilities and their ability to affect the foaming properties of wine. Conclusions: All the tested strains in sequential AF increased the total MPs production. Moreover, the strains affected the MPs properties in different ways regarding tartaric and protein stabilities. The MPs released in sequential AF by some S. bacillaris strains showed a significant effect on protein stabilisation and tartaric stability. An effect on the foamability was found for MPs obtained in single-strain AFs of S. bacillaris

    Assessment of the microbiological origin of blowing defects in Grana Padano Protected Designation of Origin cheese

    Get PDF
    Recognized worldwide for its history, flavor, and high nutritional quality, Grana Padano (GP) is one of the most traditional Italian raw-milk, hard-cooked, long-ripened cheese. Throughout GP manufacturing, some well-known and undesired bacterial species, such as clostridia, can proliferate and lead to spoilage defects that mischaracterize the final product; however, little is known about the development of late-blowing defects in hard cheese samples without clostridia. Therefore, in this study we aimed to use metataxonomic analysis to identify bacterial taxa associated with the development of late-blowing defect in GP samples. Furthermore, the presence of several heterofermentative lactobacilli species in defective zones were verified by primer-specific PCR assay. Considering α- and ÎČ-diversity analyses, no statistically significant differences were detected between cheese samples with and without blowing defect. Following taxonomic assignment, Lactobacillus and Streptococcus were the dominant genera, whereas clostridia-related taxa were not detected in any of the 20 analyzed samples. Using EdgeR, the genera Propionibacterium and Acinetobacter were found to be prevalently more abundant in samples categorized as having “big regular holes.” In samples with “small regular holes,” multiplex PCR amplification revealed differences in terms of Lactobacillus population composition, mainly obligate homofermentative lactobacilli, between defective and non-defective zones of the same cheese wheel. This study demonstrated that GP samples with blowing defects not caused by clostridial development share similar biodiversity indices with GP collected from control zones, but an imbalance of obligate homofermentative lactobacilli was noticed between samples, which requires further analysis to better comprehend the exact mechanism involved in this process

    The addition of wine yeast Starmerella bacillaris to grape skin surface influences must fermentation and glycerol production

    No full text
    Starmerella bacillaris is a non-Saccharomyces yeast recently proposed for grape fermentation in association with Saccharomyces cerevisiae. Due to its high glycerol and moderate volatile acidity production this yeast can contribute to improving wine quality. Some strains have been demonstrated to exhibit antifungal activity against grey mould on grape, which is caused by Botrytis cinerea. The simultaneous presence of these traits in S. bacillaris is of great interest. Indeed, this yeast can be potentially used as a biocontrol agent in vineyards. Research on the ability of S. bacillaris to survive or, even to grow on the surface of grapes is a starting point in the evaluatation of its potential use in vineyards. The preliminary results of our study showed that when applied to the grape surface under laboratory condictions, inoculum sized S. bacillaris with antifungal activity developed and lasted for at least 6 days in high concentrations. In addition, it positively influenced the fermentation process by producing high concentrations of glycerol (average value 4.89 ± 0.47 g/L). Interestingly, a positive effect on wine quality was also observed when the inoculum size was 10 times higher or lower than the reference concentration. When sprayed on the vines in the vineyard and present on the grape skin surface after harvest, S. bacillaris cells can start alcoholic fermentation

    Limosilactobacillus fermentum ING8, a Potential Multifunctional Non-Starter Strain with Relevant Technological Properties and Antimicrobial Activity

    Get PDF
    Lactic acid bacteria (LAB) have gained particular attention among different exopolysaccharide-producing microorganisms due to their safety status and effects on human health and food production. Exopolysaccharide-producing LAB play a crucial role in different ways, such as improving texture, mouthfeel, controlling viscosity, and for low-calorie food production. In this study, we isolated a mul-tifunctional strain with good exopolysaccharide production properties. Limosilactobacillus fermentum ING8 was isolated from an Indian traditional fermented milk (Dahi) and evaluated for its safety, enzymatic activity, NaCl resistance and temperature tolerance, milk coagulation, and storage stability. Finally, the complete genome of this strain was sequenced and subjected to safety in silico evaluation and genomic analysis. The results revealed that L. fermentum ING8 possesses relevant technological properties, such as exopolysaccharide production, antimicrobial activity, and galactose utilization. Besides, this strain showed very high stability to storage conditions at refrigeration temperature. In addition, the genomic analysis did not evidence any possible deleterious elements, such as acquired antibiotic resistance genes, virulence genes, or hemolysis-related genes. However, all structural genes related to the galactose operon and EPS production were detected. Therefore, L. fermentum ING8 can be considered a promising multifunctional bacterium to be proposed as non-starter in different types of dairy productions

    Thermal resistance and high-performance microwave decontamination assessment of Bacillus endospores isolated from food-grade herbal extracts

    Get PDF
    Generally, endospore contamination can occur from different sources during product manufacturing in many industries and therefore lower its quality by affecting physicochemical properties and shelf-life. Bacterial endospores can germinate inside the product and produce several enzymes, which can cause several undesirable changes. This study assessed the spores thermal resistance and applied a microwave decontamination technique toward herbal extracts (Tilia tomentosa and Centella asiatica) containing ethanol or glycerol. Based on 16S rRNA analysis, the detected contaminant endospores belonged to different Bacillus species, namely B. subtilis, B. zhangzhouensis, and B. pumilus. The thermal resistance assessment using inoculated endospores in the actual products revealed B. pumilus T2 as the most resistant endospore to the heat treatments tested in both T. tomentosa and C. asiatica extracts. Finally, a high-performance microwave technique was used to decontaminate T. tomentosa extract against the mixture of Bacillus spores. Results from the microwave technique indicate that the increase of temperature from 100°C to 105°C not only decontaminated the product but also could dramatically decrease the effective thermal treatment time (10 times), which can benefit the product quality. The results provided in this study considerably contribute to improving an original decontamination method for products containing glycerol and ethanol with the most negligible effect on product quality

    Starmerella bacillaris Strains Used in Sequential Alcoholic Fermentation with Saccharomyces cerevisiae Improves Protein Stability in White Wines

    Get PDF
    Haze can appear in white wines as a result of the denaturation and subsequent aggregation of grape pathogenesis-related (PR) proteins. Yeast cell-wall polysaccharides, particularly mannoproteins, represent a promising strategy to reduce the incidence of this phenomenon. The aim of this study was to evaluate the effects of 13 Starmerella bacillaris strains, in sequential fermentation with Saccharomyces cerevisiae, on wine protein stability of three white wines (Sauvignon blanc, Pinot grigio, and Manzoni bianco). The resulting wines were characterized in terms of their chemical composition, content of PR proteins and polysaccharides, and heat stability. In addition, the mannoprotein fraction was purified from six wines, five produced with S. bacillaris and one with S. cerevisiae EC1118 used as control. Generally, wines produced with S. bacillaris strains were more heat-stable, despite generally containing higher amounts of PR proteins. The increased heat stability of Starmerella wines was attributed to the stabilizing effect resulting from their higher concentrations of both total polysaccharides and mannoprotein fractions. In particular, for the most heat unstable wine (Manzoni bianco), the low MW mannoprotein fraction resulted to be the most involved in wine stability. The ability to produce wines with different heat stability was demonstrated to be strain-dependent and was more evident in the most unstable wines. By reducing fining waste, the use of S. bacillaris as an enological starter can be proposed as a new tool to manage wine protein stability for a more sustainable winemaking
    • 

    corecore