103 research outputs found

    Dinosaur Speed Demon: The Caudal Musculature of Carnotaurus sastrei and Implications for the Evolution of South American Abelisaurids

    Get PDF
    In the South American abelisaurids Carnotaurus sastrei, Aucasaurus garridoi, and, to a lesser extent Skorpiovenator bustingorryi, the anterior caudal ribs project at a high dorsolateral inclination and have interlocking lateral tips. This unique morphology facilitated the expansion of the caudal hypaxial musculature at the expense of the epaxial musculature. Distinct ridges on the ventrolateral surfaces of the caudal ribs of Aucasaurus garridoi are interpreted as attachment scars from the intra caudofemoralis/ilio-ischiocaudalis septa, and confirm that the M. caudofemoralis of advanced South American abelisaurids originated from a portion of the caudal ribs. Digital muscle models indicate that, relative to its overall body size, Carnotaurus sastrei had a substantially larger M. caudofemoralis than any other theropod yet studied. In most non-avian theropods, as in many extant sauropsids, the M. caudofemoralis served as the primary femoral retractor muscle during the locomotive power stroke. This large investment in the M. caudofemoralis suggests that Carnotaurus sastrei had the potential for great cursorial abilities, particularly short-burst sprinting. However, the tightly interlocking morphology of the anterior caudal vertebrae implies a reduced ability to make tight turns. Examination of these vertebral traits in evolutionary context reveals a progressive sequence of increasing caudofemoral mass and tail rigidity among the Abelisauridae of South America

    The first definitive carcharodontosaurid (Dinosauria:Theropoda) from Asia and the delayed ascent of tyrannosaurids

    Get PDF
    Little is known about the evolution of large-bodied theropod dinosaurs during the Early to mid Cretaceous in Asia. Prior to this time, Asia was home to an endemic fauna of basal tetanurans, whereas terminal Cretaceous ecosystems were dominated by tyrannosaurids, but the intervening 60 million years left a sparse fossil record. Here, we redescribe the enigmatic large-bodied Chilantaisaurus maortuensis from the Turonian of Inner Mongolia, China. We refer this species to a new genus, Shaochilong, and analyze its systematic affinities. Although Shaochilong has previously been allied with several disparate theropod groups (Megalosauridae, Allosauridae, Tyrannosauroidea, Maniraptora), we find strong support for a derived carcharodontosaurid placement. As such, Shaochilong is the first unequivocal Asian member of Carcharodontosauridae, which was once thought to be restricted to Gondwana. The discovery of an Asian carcharodontosaurid indicates that this clade was cosmopolitan in the Early to mid Cretaceous and that Asian large-bodied theropod faunas were no longer endemic at this time. It may also suggest that the ascent of tyrannosaurids into the large-bodied dinosaurian predator niche was a late event that occurred towards the end of the Cretaceous,between the Turonian and the Campanian

    Evidence for Avian Intrathoracic Air Sacs in a New Predatory Dinosaur from Argentina

    Get PDF
    Background: Living birds possess a unique heterogeneous pulmonary system composed of a rigid, dorsally-anchored lung and several compliant air sacs that operate as bellows, driving inspired air through the lung. Evidence from the fossil record for the origin and evolution of this system is extremely limited, because lungs do not fossilize and because the bellow-like air sacs in living birds only rarely penetrate (pneumatize) skeletal bone and thus leave a record of their presence. Methodology/Principal Findings: We describe a new predatory dinosaur from Upper Cretaceous rocks in Argentina, Aerosteon riocoloradensis gen. et sp. nov., that exhibits extreme pneumatization of skeletal bone, including pneumatic hollowing of the furcula and ilium. In living birds, these two bones are pneumatized by diverticulae of air sacs (clavicular, abdominal) that are involved in pulmonary ventilation. We also describe several pneumatized gastralia (‘‘stomach ribs’’), which suggest that diverticulae of the air sac system were present in surface tissues of the thorax. Conclusions/Significance: We present a four-phase model for the evolution of avian air sacs and costosternal-driven lung ventilation based on the known fossil record of theropod dinosaurs and osteological correlates in extant birds: (1) Phase I—Elaboration of paraxial cervical air sacs in basal theropods no later than the earliest Late Triassic. (2) Phase II—Differentiation of avian ventilatory air sacs, including both cranial (clavicular air sac) and caudal (abdominal air sac) divisions, in basal tetanurans during the Jurassic. A heterogeneous respiratory tract wit

    New Information on the Cranial Anatomy of Acrocanthosaurus atokensis and Its Implications for the Phylogeny of Allosauroidea (Dinosauria: Theropoda)

    Get PDF
    Allosauroidea has a contentious taxonomic and systematic history. Within this group of theropod dinosaurs, considerable debate has surrounded the phylogenetic position of the large-bodied allosauroid Acrocanthosaurus atokensis from the Lower Cretaceous Antlers Formation of North America. Several prior analyses recover Acrocanthosaurus atokensis as sister taxon to the smaller-bodied Allosaurus fragilis known from North America and Europe, and others nest Acrocanthosaurus atokensis within Carcharodontosauridae, a large-bodied group of allosauroids that attained a cosmopolitan distribution during the Early Cretaceous.Re-evaluation of a well-preserved skull of Acrocanthosaurus atokensis (NCSM 14345) provides new information regarding the palatal complex and inner surfaces of the skull and mandible. Previously inaccessible internal views and articular surfaces of nearly every element of the skull are described. Twenty-four new morphological characters are identified as variable in Allosauroidea, combined with 153 previously published characters, and evaluated for eighteen terminal taxa. Systematic analysis of this dataset recovers a single most parsimonious topology placing Acrocanthosaurus atokensis as a member of Allosauroidea, in agreement with several recent analyses that nest the taxon well within Carcharodontosauridae.A revised diagnosis of Acrocanthosaurus atokensis finds that the species is distinguished by four primary characters, including: presence of a knob on the lateral surangular shelf; enlarged posterior surangular foramen; supraoccipital protruding as a double-boss posterior to the nuchal crest; and pneumatic recess within the medial surface of the quadrate. Furthermore, the recovered phylogeny more closely agrees with the stratigraphic record than hypotheses that place Acrocanthosaurus atokensis as more closely related to Allosaurus fragilis. Fitch optimization of body size is also more consistent with the placement of Acrocanthosaurus atokensis within a clade of larger carcharodontosaurid taxa than with smaller-bodied taxa near the base of Allosauroidea. This placement of Acrocanthosaurus atokensis supports previous hypotheses of a global carcharodontosaurid radiation during the Early Cretaceous

    A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: Implications for the evolution and paleobiology of titanosauria

    Get PDF
    We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian - Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla - lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) ´tongue-like´ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with ´strut-like´ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a ´ghost lineage´ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies - such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward- facing snout - that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation.Fil: Martínez, Rubén Darío. Universidad Nacional de la Patagonia; ArgentinaFil: Lamanna, Matthew C.. Carnegie Museum Of Natural History; Estados UnidosFil: Novas, Fernando Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "bernardino Rivadavia"; ArgentinaFil: Ridgely, Ryan C.. Ohio University College Of Osteopathic Medicine; Estados UnidosFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Javier E.. Hospital Regional de Comodoro Rivadavia; ArgentinaFil: Vita, Javier R.. Resonancia Magnética Borelli; ArgentinaFil: Witmer, Lawrence M.. Ohio University College Of Osteopathic Medicine; Estados Unido

    Theropod Fauna from Southern Australia Indicates High Polar Diversity and Climate-Driven Dinosaur Provinciality

    Get PDF
    The Early Cretaceous fauna of Victoria, Australia, provides unique data on the composition of high latitude southern hemisphere dinosaurs. We describe and review theropod dinosaur postcranial remains from the Aptian–Albian Otway and Strzelecki groups, based on at least 37 isolated bones, and more than 90 teeth from the Flat Rocks locality. Several specimens of medium- and large-bodied individuals (estimated up to ∼8.5 metres long) represent allosauroids. Tyrannosauroids are represented by elements indicating medium body sizes (∼3 metres long), likely including the holotype femur of Timimus hermani, and a single cervical vertebra represents a juvenile spinosaurid. Single specimens representing medium- and small-bodied theropods may be referrable to Ceratosauria, Ornithomimosauria, a basal coelurosaur, and at least three taxa within Maniraptora. Thus, nine theropod taxa may have been present. Alternatively, four distinct dorsal vertebrae indicate a minimum of four taxa. However, because most taxa are known from single bones, it is likely that small-bodied theropod diversity remains underestimated. The high abundance of allosauroids and basal coelurosaurs (including tyrannosauroids and possibly ornithomimosaurs), and the relative rarity of ceratosaurs, is strikingly dissimilar to penecontemporaneous dinosaur faunas of Africa and South America, which represent an arid, lower-latitude biome. Similarities between dinosaur faunas of Victoria and the northern continents concern the proportional representatation of higher clades, and may result from the prevailing temperate–polar climate of Australia, especially at high latitudes in Victoria, which is similar to the predominant warm–temperate climate of Laurasia, but distinct from the arid climate zone that covered extensive areas of Gondwana. Most dinosaur groups probably attained a near-cosmopolitan distribution in the Jurassic, prior to fragmentation of the Pangaean supercontinent, and some aspects of the hallmark ‘Gondwanan’ fauna of South America and Africa may therefore reflect climate-driven provinciality, not vicariant evolution driven by continental fragmentation. However, vicariance may still be detected at lower phylogenetic levels

    First Evidence of Reproductive Adaptation to “Island Effect” of a Dwarf Cretaceous Romanian Titanosaur, with Embryonic Integument In Ovo

    Get PDF
    <div><h3>Background</h3><p>The Cretaceous vertebrate assemblages of Romania are famous for geographically endemic dwarfed dinosaur taxa. We report the first complete egg clutches of a dwarf lithostrotian titanosaur, from Toteşti, Romania, and its reproductive adaptation to the “island effect”.</p> <h3>Methodology/Findings</h3><p>The egg clutches were discovered in sequential sedimentary layers of the Maastrichtian Sânpetru Formation, Toteşti. The occurrence of 11 homogenous clutches in successive strata suggests philopatry by the same dinosaur species, which laid clutches averaging four ∼12 cm diameters eggs. The eggs and eggshells display numerous characters shared with the positively identified material from egg-bearing level 4 of the Auca Mahuevo (Patagonia, Argentina) nemegtosaurid lithostrotian nesting site. Microscopic embryonic integument with bacterial evidences was recovered in one egg. The millimeter-size embryonic integument displays micron size dermal papillae implying an early embryological stage at the time of death, likely corresponding to early organogenesis before the skeleton formation.</p> <h3>Conclusions/Significance</h3><p>The shared oological characters between the Haţeg specimens and their mainland relatives suggest a highly conservative reproductive template, while the nest decrease in egg numbers per clutch may reflect an adaptive trait to a smaller body size due to the “island effect”. The combined presence of the lithostrotian egg and its embryo in the Early Cretaceous Gobi coupled with the oological similarities between the Haţeg and Auca Mahuevo oological material evidence that several titanosaur species migrated from Gondwana through the Haţeg Island before or during the Aptian/Albian. It also suggests that this island might have had episodic land bridges with the rest of the European archipelago and Asia deep into the Cretaceous.</p> </div

    The use of antenatal and postnatal care: perspectives and experiences of women and health care providers in rural southern Tanzania

    Get PDF
    BACKGROUND\ud \ud Although antenatal care coverage in Tanzania is high, worrying gaps exist in terms of its quality and ability to prevent, diagnose or treat complications. Moreover, much less is known about the utilisation of postnatal care, by which we mean the care of mother and baby that begins one hour after the delivery until six weeks after childbirth. We describe the perspectives and experiences of women and health care providers on the use of antenatal and postnatal services.\ud \ud METHODS\ud \ud From March 2007 to January 2008, we conducted in-depth interviews with health care providers and village based informants in 8 villages of Lindi Rural and Tandahimba districts in southern Tanzania. Eight focus group discussions were also conducted with women who had babies younger than one year and pregnant women. The discussion guide included information about timing of antenatal and postnatal services, perceptions of the rationale and importance of antenatal and postnatal care, barriers to utilisation and suggestions for improvement.\ud \ud RESULTS\ud \ud Women were generally positive about both antenatal and postnatal care. Among common reasons mentioned for late initiation of antenatal care was to avoid having to make several visits to the clinic. Other concerns included fear of encountering wild animals on the way to the clinic as well as lack of money. Fear of caesarean section was reported as a factor hindering intrapartum care-seeking from hospitals. Despite the perceived benefits of postnatal care for children, there was a total lack of postnatal care for the mothers. Shortages of staff, equipment and supplies were common complaints in the community.\ud \ud CONCLUSION\ud \ud Efforts to improve antenatal and postnatal care should focus on addressing geographical and economic access while striving to make services more culturally sensitive. Antenatal and postnatal care can offer important opportunities for linking the health system and the community by encouraging women to deliver with a skilled attendant. Addressing staff shortages through expanding training opportunities and incentives to health care providers and developing postnatal care guidelines are key steps to improve maternal and newborn health

    A Nomenclature for Vertebral Fossae in Sauropods and Other Saurischian Dinosaurs

    Get PDF
    The axial skeleton of extinct saurischian dinosaurs (i.e., theropods, sauropodomorphs), like living birds, was pneumatized by epithelial outpocketings of the respiratory system. Pneumatic signatures in the vertebral column of fossil saurischians include complex branching chambers within the bone (internal pneumaticity) and large chambers visible externally that are bounded by neural arch laminae (external pneumaticity). Although general aspects of internal pneumaticity are synapomorphic for saurischian subgroups, the individual internal pneumatic spaces cannot be homologized across species or even along the vertebral column, due to their variability and absence of topographical landmarks. External pneumatic structures, in contrast, are defined by ready topological landmarks (vertebral laminae), but no consistent nomenclatural system exists. This deficiency has fostered confusion and limited their use as character data in phylogenetic analysis.We present a simple system for naming external neural arch fossae that parallels the one developed for the vertebral laminae that bound them. The nomenclatural system identifies fossae by pointing to reference landmarks (e.g., neural spine, centrum, costal articulations, zygapophyses). We standardize the naming process by creating tripartite names from “primary landmarks,” which form the zygodiapophyseal table, “secondary landmarks,” which orient with respect to that table, and “tertiary landmarks,” which further delineate a given fossa.The proposed nomenclatural system for lamina-bounded fossae adds clarity to descriptions of complex vertebrae and allows these structures to be sourced as character data for phylogenetic analyses. These anatomical terms denote potentially homologous pneumatic structures within Saurischia, but they could be applied to any vertebrate with vertebral laminae that enclose spaces, regardless of their developmental origin or phylogenetic distribution

    An Oral Vaccine Based on U-Omp19 Induces Protection against B. abortus Mucosal Challenge by Inducing an Adaptive IL-17 Immune Response in Mice

    Get PDF
    As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4+ T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays a central role in vaccine mediated anti-Brucella mucosal immunity
    corecore