262 research outputs found
Telavancin for hospital-acquired pneumonia: Clinical response and 28-day survival
U.S. Food and Drug Administration draft guidance for future antibiotic clinical trials of bacterial nosocomial pneumonia recommends the use of diagnostic criteria according to American Thoracic Society/Infectious Diseases Society of America (ATS/IDSA) guidelines and the use of a primary endpoint of 28-day all-cause mortality. The effect of applying these guidelines on outcomes of phase III nosocomial pneumonia studies of telavancin was evaluated in a post hoc analysis. ATS/IDSA criteria were applied in a blind fashion to the original all-treated (AT) group. Clinical cure rates at final follow-up were determined in the refined AT and clinically evaluable (CE) groups (ATS/IDSA-AT and ATS/IDSA-CE, respectively). The exploratory endpoint of 28-day survival was evaluated for the ATS/IDSA-AT group. Noninferiority of telavancin versus vancomycin was demonstrated, with similar cure rates in the ATS/IDSA-AT (59% versus 59%) and ATS/IDSA-CE (83% versus 80%) groups. Cure rates favored telavancin in ATS/IDSA-CE patients where Staphylococcus aureus was the sole pathogen (86% versus 75%). Overall, 28-day survival rates were similar in the telavancin (76%) and vancomycin (77%) groups but lower in telavancin-treated patients with preexisting moderate-to-severe renal impairment (creatinine clearance [CL(CR)] of <50 ml/min). Telavancin should be administered to patients with moderate-to-severe renal impairment only if treatment benefit outweighs the risk or if no suitable alternatives are available
Discovery, Characterization, and Structure–Activity Relationships of an Inhibitor of Inward Rectifier Potassium (Kir) Channels with Preference for Kir2.3, Kir3.X, and Kir7.1
The inward rectifier family of potassium (Kir) channels is comprised of at least 16 family members exhibiting broad and often overlapping cellular, tissue, or organ distributions. The discovery of disease-causing mutations in humans and experiments on knockout mice has underscored the importance of Kir channels in physiology and in some cases raised questions about their potential as drug targets. However, the paucity of potent and selective small-molecule modulators targeting specific family members has with few exceptions mired efforts to understand their physiology and assess their therapeutic potential. A growing body of evidence suggests that G protein-coupled inward rectifier K (GIRK) channels of the Kir3.X subfamily may represent novel targets for the treatment of atrial fibrillation. In an effort to expand the molecular pharmacology of GIRK, we performed a thallium (Tl+) flux-based high-throughput screen of a Kir1.1 inhibitor library for modulators of GIRK. One compound, termed VU573, exhibited 10-fold selectivity for GIRK over Kir1.1 (IC50 = 1.9 and 19 μM, respectively) and was therefore selected for further study. In electrophysiological experiments performed on Xenopus laevis oocytes and mammalian cells, VU573 inhibited Kir3.1/3.2 (neuronal GIRK) and Kir3.1/3.4 (cardiac GIRK) channels with equal potency and preferentially inhibited GIRK, Kir2.3, and Kir7.1 over Kir1.1 and Kir2.1.Tl+ flux assays were established for Kir2.3 and the M125R pore mutant of Kir7.1 to support medicinal chemistry efforts to develop more potent and selective analogs for these channels. The structure–activity relationships of VU573 revealed few analogs with improved potency, however two compounds retained most of their activity toward GIRK and Kir2.3 and lost activity toward Kir7.1. We anticipate that the VU573 series will be useful for exploring the physiology and structure–function relationships of these Kir channels
Autologous adoptive T-cell therapy for recurrent or drug-resistant cytomegalovirus complications in solid organ transplant patients: a single-arm open-label phase I clinical trial
BACKGROUND: Opportunistic infections including cytomegalovirus (CMV) are a major cause of morbidity and mortality in solid organ transplant (SOT) recipients. The recurrent and protracted use of anti-viral drugs with eventual emergence of drug resistance represents a significant constraint to therapy. While adoptive T-cell therapy has been successfully used in haematopoietic stem cell transplant recipients, its extension to the SOT setting poses a considerable challenge because of the inhibitory effects of immunosuppressive drugs on the virus-specific T-cell response in vivo, and the perceived risk of graft rejection. METHODS: In this prospective study, 22 SOT recipients (13 renal, 8 lung and 1 heart) with recurrent or ganciclovir-resistant CMV infection were recruited and of these, 13 patients were treated with in vitro-expanded autologous CMV-specific T cells. These patients were monitored for safety, clinical symptoms and immune reconstitution. RESULTS: Autologous CMV-specific T-cell manufacture was attempted for 21 patients, and was successful in 20 cases. The use of this adoptive immunotherapy was associated with no therapy-related serious adverse events. Eleven (84%) of the thirteen treated patients showed improvement in symptoms, including complete resolution or reduction in DNAemia, CMV-associated end organ disease and/or the cessation or reduced use of anti-viral drugs. Furthermore, many of these patients showed co-incident increased frequency of CMV-specific T cells in peripheral blood following completion of T-cell therapy. CONCLUSIONS: The data presented here demonstrate for the first time the clinical safety of CMV-specific adoptive T-cell therapy and its potential therapeutic benefit for SOT patients with recurrent and/or drug-resistant CMV infection or disease
Cortical Representation of Lateralized Grasping in Chimpanzees (Pan troglodytes): A Combined MRI and PET Study
Functional imaging studies in humans have localized the motor-hand region to a neuroanatomical landmark call the KNOB within the precentral gyrus. It has also been reported that the KNOB is larger in the hemisphere contralateral to an individual's preferred hand, and therefore may represent the neural substrate for handedness. The KNOB has also been neuronatomically described in chimpanzees and other great apes and is similarly associated with handedness. However, whether the chimpanzee KNOB represents the hand region is unclear from the extant literature. Here, we used PET to quantify neural metabolic activity in chimpanzees when engaged in unilateral reach-and-grasping responses and found significantly lateralized activation of the KNOB region in the hemisphere contralateral to the hand used by the chimpanzees. We subsequently constructed a probabilistic map of the KNOB region in chimpanzees in order to assess the overlap in consistency in the anatomical landmarks of the KNOB with the functional maps generated from the PET analysis. We found significant overlap in the anatomical and functional voxels comprising the KNOB region, suggesting that the KNOB does correspond to the hand region in chimpanzees. Lastly, from the probabilistic maps, we compared right- and left-handed chimpanzees on lateralization in grey and white matter within the KNOB region and found that asymmetries in white matter of the KNOB region were larger in the hemisphere contralateral to the preferred hand. These results suggest that neuroanatomical asymmetries in the KNOB likely reflect changes in connectivity in primary motor cortex that are experience dependent in chimpanzees and possibly humans
A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models
Progressive kidney diseases are often associated with scarring of the kidney’s filtration unit, a condition called focal segmental glomerulosclerosis (FSGS). This scarring is due to loss of podocytes, cells critical for glomerular filtration, and leads to proteinuria and kidney failure. Inherited forms of FSGS are caused by Rac1-activating mutations, and Rac1 induces TRPC5 ion channel activity and cytoskeletal remodeling in podocytes. Whether TRPC5 activity mediates FSGS onset and progression is unknown. We identified a small molecule, AC1903, that specifically blocks TRPC5 channel activity in glomeruli of proteinuric rats. Chronic administration of AC1903 suppressed severe proteinuria and prevented podocyte loss in a transgenic rat model of FSGS. AC1903 also provided therapeutic benefit in a rat model of hypertensive proteinuric kidney disease. These data indicate that TRPC5 activity drives disease and that TRPC5 inhibitors may be valuable for the treatment of progressive kidney diseases.National Institutes of Health (U.S.) (Grant DK095045)National Institutes of Health (U.S.) (Grant DK099465)National Institutes of Health (U.S.) (Grant DK103658)National Institutes of Health (U.S.) (Grant DK083511)National Institutes of Health (U.S.) (Grant DK093746
A Mapping of Drug Space from the Viewpoint of Small Molecule Metabolism
Small molecule drugs target many core metabolic enzymes in humans and pathogens,
often mimicking endogenous ligands. The effects may be therapeutic or toxic, but
are frequently unexpected. A large-scale mapping of the intersection between
drugs and metabolism is needed to better guide drug discovery. To map the
intersection between drugs and metabolism, we have grouped drugs and metabolites
by their associated targets and enzymes using ligand-based set signatures
created to quantify their degree of similarity in chemical space. The results
reveal the chemical space that has been explored for metabolic targets, where
successful drugs have been found, and what novel territory remains. To aid other
researchers in their drug discovery efforts, we have created an online resource
of interactive maps linking drugs to metabolism. These maps predict the
“effect space” comprising likely target enzymes for each of
the 246 MDDR drug classes in humans. The online resource also provides
species-specific interactive drug-metabolism maps for each of the 385 model
organisms and pathogens in the BioCyc database collection. Chemical similarity
links between drugs and metabolites predict potential toxicity, suggest routes
of metabolism, and reveal drug polypharmacology. The metabolic maps enable
interactive navigation of the vast biological data on potential metabolic drug
targets and the drug chemistry currently available to prosecute those targets.
Thus, this work provides a large-scale approach to ligand-based prediction of
drug action in small molecule metabolism
A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoR0 field
Detection of the epoch of reionization HI signal requires a precise understanding of the intervening galaxies and AGN, both for instrumental calibration and foreground removal. We present a catalogue of 7394 extragalactic sources at 182 MHz detected in the RA = 0 field of the Murchison Widefield Array Epoch of Reionization observation programme. Motivated by unprecedented requirements for precision and reliability we develop new methods for source finding and selection. We apply machine learning methods to self-consistently classify the relative reliability of 9490 source candidates. A subset of 7466 are selected based on reliability class and signal-to-noise ratio criteria. These are statistically cross-matched to four other radio surveys using both position and flux density information. We find 7369 sources to have confident matches, including 90 partially resolved sources that split into a total of 192 sub-components. An additional 25 unmatched sources are included as new radio detections. The catalogue sources have a median spectral index of -0.85. Spectral flattening is seen towards lower frequencies with a median of -0.71 predicted at 182 MHz. The astrometric error is 7 arcsec compared to a 2.3 arcmin beam FWHM. The resulting catalogue covers ~1400 deg2 and is complete to approximately 80 mJy within half beam power. This provides the most reliable discrete source sky model available to date in the MWA EoR0 field for precision foreground subtraction
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
- …