31 research outputs found
CFD study of oil-jet gear interaction flow phenomena in spur gears
Oil-jet lubrication and cooling of high-speed gears is frequently employed in aeronautical systems, such as novel high-bypass civil aero engines based on the geared turbofan technology. Using such oil-jet system, practitioners aim to achieve high cooling rates on the flanks of the highly thermally loaded gears with minimum oil usage. Thus, for an optimal design, detailed knowledge about the flow processes is desired. These involve the oil exiting the nozzle, the oil impacting on the gear teeth, the oil spreading on the flanks, the subsequent oil fling-off, as well as the effect of the design parameters on the oil flow. Better understanding of these processes will improve the nozzle design phase, e.g. regarding the nozzle positioning and orientation, as well as the nozzle sizing and operation.
Most related studies focus on the impingement depth to characterize the two-phase flow. However, the level of information of this scalar value is rather low for a complete description of the highly dynamic three-dimensional flow. Motivated by the advancements in numerical methods and the computational resources available nowadays, the investigation of the oil-jet gear interaction by means of computational fluid dynamics (CFD) has come into focus lately.
In this work, a numerical setup based on the volume-of-fluid method is presented and employed to investigate the two-phase flow phenomena occurring in the vicinity of the gear teeth. The setup consists of a single oil-jet impinging on a single rotating spur gear. By introducing new metrics for characterizing the flow phenomena, extensive use of the possibilities of modern CFD is made, allowing a detailed transient and spatially resolved flow analysis. Thus, not only the impingement depth, but also the temporal and spatial evolution of wetted areas on the gear flanks, as well as the evolution of the oil volume in contact with the gear flanks are extracted from the simulation data and compared in a CFD study.
The study consists of 21 different simulation cases, whereby the effect of varying the jet velocity, the jet inclination angle, the jet diameter, and the gear speed are examined. Consistent results compared to a simplified analytical approach for the impinging depth are obtained and the results for the newly introduced metrics are presented
Heat Transfer by Impingement Cooling of Spur Gears
Lower specific fuel consumption as well as noise reduction are the main goals in the sector of civilaeronautics engineering nowadays. One prominent concept of achieving these goals is the gearedturbofan engine, in which a planetary gear box is installed between the low pressure spool and thefan. This allows the low pressure turbine as well as the fan to rotate at optimum speeds. This way, thesame power can be generated by fewer stages in the faster rotating turbine, which in turn compensatesthe additional weight of the gear box. The main advantage of the geared turbofan is the possibilityto further increase the fan diameter and therefore improve the propulsion efficiency by means of ahigher bypass ratio. One crucial feature of the gear box is the cooling system needed to ensure safeoperating conditions during all phases of the flight envelope. For an efficient cooling system, optimizedwith respect to weight and cost, the heat transfer between the cooling fluid and the gears needs tobe understood thoroughly. In this study, the impingement cooling of spur gears by oil jets is forthe first time examined analytically and compared to experimental results. This provides knowledgeabout the evolution of the heat transfer coefficient distribution resulting from the cooling fluid flowrate and the gear speed, as well as a deep understanding of the underlying phenomena causing thisbehavior. The analytical solution process comprises of two calculation steps. First, the size of the oilfilm is calculated and secondly, the heat transfer across this surface is evaluated while the oil film isflung off the tooth flank by centrifugal forces. The parameters varied in this study were the oil flowrate, the rotational speed of the spur gear and the oil jet angle. The theoretical results are in goodagreement with the experimental data. The theoretical approach can therefore be applied as a newand efficient tool to estimate the global heat transfer coefficient of impingement cooled spur gears.Furthermore, the validated tool can be used as boundary condition for thermal models of spur gearsand help optimize the impingement cooling oil systems
Experimental study of the pressure loss in aero-engine air-oil separators
The results of extensive experimental testing of an aero-engine air-oil separator are presented and discussed. The study focuses on the pressure loss of the system. Oil enters the device in the form of dispersed droplets. Subsequently, separation occurs by centrifuging larger droplets towards the outer walls and by film formation at the inner surface of a rotating porous material, namely an open-cell metal foam. The work described here is part of a study led jointly by the Karlsruhe Institute of Technology (KIT) and the University of Nottingham (UNott) within a recent EU project.
The goal of the research is to increase the separation efficiency to mitigate oil consumption and emissions, while keeping the pressure loss as low as possible. The aim is to determine the influencing factors on pressure loss and separation efficiency. With this knowledge, a correlation can eventually be derived. Experiments were conducted for three different separator configurations, one without a metal foam and two with metal foams of different pore sizes. For each configuration, a variety of engine-like conditions of air mass flow rate, rotational speed and droplet size was investigated. The experimental results were used to validate and improve the numerical modelling.
Results for the pressure drop and its dependencies on air mass flow rate and the rotational speed were analysed. It is shown that the swirling flow and the dissipation of angular momentum are the most important contributors to the pressure drop, besides the losses due to friction and dissipation caused by the flow passing the metal foam. It was found that the ratio of the rotor speed and the tangential velocity of the fluid is an important parameter to describe the influence of rotation on the pressure loss. Contrary to expectations, the pressure loss is not necessarily increased with a metal foam installed
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts
Treatment Extension of Pegylated Interferon Alpha and Ribavirin Does Not Improve SVR in Patients with Genotypes 2/3 without Rapid Virological Response (OPTEX Trial): A Prospective, Randomized, Two-Arm, Multicentre Phase IV Clinical Trial
Although sofosbuvir has been approved for patients with genotypes 2/3 (G2/3), many parts of the world still consider pegylated Interferon alpha (P) and ribavirin (R) as standard of care for G2/3. Patients with rapid virological response (RVR) show response rates >80%. However, SVR (sustained virological response) in non-RVR patients is not satisfactory. Longer treatment duration may be required but evidence from prospective trials are lacking. A total of 1006 chronic HCV genotype 2/3 patients treated with P/R were recruited into a German HepNet multicenter screening registry. Of those, only 226 patients were still HCV RNA positive at week 4 (non-RVR). Non-RVR patients with ongoing response after 24 weeks P-2b/R qualified for OPTEX, a randomized trial investigating treatment extension of additional 24 weeks (total 48 weeks, Group A) or additional 12 weeks (total 36 weeks, group B) of 1.5 g/kg P-2b and 800-1400 mg R. Due to the low number of patients without RVR, the number of 150 anticipated study patients was not met and only 99 non-RVR patients (n=50 Group A, n=49 Group B) could be enrolled into the OPTEX trial. Baseline factors did not differ between groups. Sixteen patients had G2 and 83 patients G3. Based on the ITT (intention-to-treat) analysis, 68% [55%; 81%] in Group A and 57% [43%; 71%] in Group B achieved SVR (p=0.31). The primary endpoint of better SVR rates in Group A compared to a historical control group (SVR 70%) was not met. In conclusion, approximately 23% of G2/3 patients did not achieve RVR in a real world setting. However, subsequent recruitment in a treatment-extension study was difficult. Prolonged therapy beyond 24 weeks did not result in higher SVR compared to a historical control group
Baseline characteristics of all randomized patients at study initiation.
<p>* In Delgard et al., 400.000IU/mL was used as cut-off for high and low viral load</p><p>Baseline characteristics of all randomized patients at study initiation.</p