2,639 research outputs found
Investigation of laser frequency stabilization
Frequency stabilization of far infrared lase
Optical spectroscopy of X-MEGA targets I. CPD -59 2635: A New Double-Lined O type Binary in the Carina Nebula
Optical spectroscopy of CPD -59 2635, one of the O-type stars in the open cluster Trumpler 16 in the Carina Nebula, reveals this star to be a double-lined binary system. We have obtained the first radial velocity orbit for this system, consisting of a circular solution with a period of 2.2999 days and semi amplitudes of 208 and 273 km/s. This results in minimum masses of 15 and 11 Msol for the binary components of CPD -59 2635, which we classified as O8V and O9.5V, though spectral type variations of the order of 1 subclass, that we identify as the Struve-Sahade effect, seem to be present in both components. From ROSAT HRI observations of CPD -59 2635 we determine a luminosity ratio log(L_x/L_bol)~ -7, which is similar to that observed for other O-type stars in the Carina Nebula region. No evidence of light variations is present in the available optical or X-rays data sets
Branching ratios of Bc Meson Decaying to Pseudoscalar and Axial-Vector Mesons
We study Cabibbo-Kobayashi-Maskawa (CKM) favored weak decays of Bc mesons in
the Isgur-Scora-Grinstein-Wise (ISGW) quark model. We present a detailed
analysis of the Bc meson decaying to a pseudoscalar meson (P) and an
axial-vector meson (A). We also give the form factors involving transition in
the ISGW II framework and consequently, predict the branching ratios of decays.Comment: 19 pages,7 table
Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival
Oct-2, a POU homeo domain transcription factor, is believed to stimulate B-cell-restricted expression of immunoglobulin genes through binding sites in immunoglobulin gene promoters and enhancers. To determine whether Oct-2 is required for B-cell development or function, or has other developmental roles, the gene was disrupted by homologous recombination. Oct-2^(-/-) mice develop normally but die within hours of birth for undetermined reasons. Mutants contain normal numbers of B-cell precursors but are somewhat deficient in IgM+ B cells. These B cells have a marked defect in their capacity to secrete immunoglobulin upon mitogenic stimulation in vitro. Thus, Oct-2 is not required for the generation of immunoglobulin-bearing B cells but is crucial for their maturation to immunoglobulin-secreting cells and for another undetermined organismal function
Dimensional crossover of a boson gas in multilayers
We obtain the thermodynamic properties for a non-interacting Bose gas
constrained on multilayers modeled by a periodic Kronig-Penney delta potential
in one direction and allowed to be free in the other two directions. We report
Bose-Einstein condensation (BEC) critical temperatures, chemical potential,
internal energy, specific heat, and entropy for different values of a
dimensionless impenetrability between layers. The BEC critical
temperature coincides with the ideal gas BEC critical temperature
when and rapidly goes to zero as increases to infinity for
any finite interlayer separation. The specific heat \textit{vs} for
finite and plane separation exhibits one minimum and one or two maxima
in addition to the BEC, for temperatures larger than which highlights
the effects due to particle confinement. Then we discuss a distinctive
dimensional crossover of the system through the specific heat behavior driven
by the magnitude of . For the crossover is revealed by the change
in the slope of and when , it is evidenced by a broad
minimum in .Comment: Ten pages, nine figure
Unoccupied Band Structure of NbSe2 by Very-Low-Energy Electron Diffraction: Experiment and Theory
A combined experimental and theoretical study of very-low-energy electron
diffraction at the (0001) surface of 2H-NbSe2 is presented. Electron
transmission spectra have been measured for energies up to 50 eV above the
Fermi level with k|| varying along the GammaK line of the Brillouin zone. Ab
initio calculations of the spectra have been performed with the extended linear
augmented plane wave k-p method. The experimental spectra are interpreted in
terms of three-dimensional one-electron band structure. Special attention is
paid to the quasi-particle lifetimes: by comparing the broadening of the
spectral structures in the experimental and calculated spectra the energy
dependence of the optical potential Vi is determined. A sharp increase of Vi at
20 eV is detected, which is associated with a plasmon peak in the
Im(-1/epsilon) function. Furthermore, the electron energy loss spectrum and the
reflectivity of NbSe2 are calculated ab initio and compared with optical
experiments. The obtained information on the dispersions and lifetimes of the
unoccupied states is important for photoemission studies of the 3D band
structure of the valence band.Comment: 17 pages, 11 Postscript figures, submitted to Phys. Rev.
Ginzburg-Landau-Gor'kov Theory of Magnetic oscillations in a type-II 2-dimensional Superconductor
We investigate de Haas-van Alphen (dHvA) oscillations in the mixed state of a
type-II two-dimensional superconductor within a self-consistent Gor'kov
perturbation scheme. Assuming that the order parameter forms a vortex lattice
we can calculate the expansion coefficients exactly to any order. We have
tested the results of the perturbation theory to fourth and eight order against
an exact numerical solution of the corresponding Bogoliubov-de Gennes
equations. The perturbation theory is found to describe the onset of
superconductivity well close to the transition point . Contrary to
earlier calculations by other authors we do not find that the perturbative
scheme predicts any maximum of the dHvA-oscillations below . Instead we
obtain a substantial damping of the magnetic oscillations in the mixed state as
compared to the normal state. We have examined the effect of an oscillatory
chemical potential due to particle conservation and the effect of a finite
Zeeman splitting. Furthermore we have investigated the recently debated issue
of a possibility of a sign change of the fundamental harmonic of the magnetic
oscillations. Our theory is compared with experiment and we have found good
agreement.Comment: 39 pages, 8 figures. This is a replacement of supr-con/9608004.
Several sections changed or added, including a section on the effect of spin
and the effect of a conserved number of particles. To be published in Phys.
Rev.
X-Atlas: An Online Archive of Chandra's Stellar High Energy Transmission Gratings Observations
The high-resolution X-ray spectroscopy made possible by the 1999 deployment
of the Chandra X-ray Observatory has revolutionized our understanding of
stellar X-ray emission. Many puzzles remain, though, particularly regarding the
mechanisms of X-ray emission from OB stars. Although numerous individual stars
have been observed in high-resolution, realizing the full scientific potential
of these observations will necessitate studying the high-resolution Chandra
dataset as a whole. To facilitate the rapid comparison and characterization of
stellar spectra, we have compiled a uniformly processed database of all stars
observed with the Chandra High Energy Transmission Grating (HETG). This
database, known as X-Atlas, is accessible through a web interface with
searching, data retrieval, and interactive plotting capabilities. For each
target, X-Atlas also features predictions of the low-resolution ACIS spectra
convolved from the HETG data for comparison with stellar sources in archival
ACIS images. Preliminary analyses of the hardness ratios, quantiles, and
spectral fits derived from the predicted ACIS spectra reveal systematic
differences between the high-mass and low-mass stars in the atlas and offer
evidence for at least two distinct classes of high-mass stars. A high degree of
X-ray variability is also seen in both high and low-mass stars, including
Capella, long thought to exhibit minimal variability. X-Atlas contains over 130
observations of approximately 25 high-mass stars and 40 low-mass stars and will
be updated as additional stellar HETG observations become public. The atlas has
recently expanded to non-stellar point sources, and Low Energy Transmission
Grating (LETG) observations are currently being added as well
Coherence in the Quasi-Particle 'Scattering' by the Vortex Lattice in Pure Type-II Superconductors
The effect of quasi-particle (QP) 'scattering' by the vortex lattice on the
de-Haas van-Alphen oscillations in a pure type-II superconductor is
investigated within mean field,asymptotic perturbation theory. Using a 2D
electron gas model it is shown that, due to a strict phase coherence in the
many-particle correlation functions, the 'scattering' effect in the asymptotic
limit () is much weaker than what is predicted
by the random vortex lattice model proposed by Maki and Stephen, which destroys
this coherence . The coherent many particle configuration is a collinear array
of many particle coordinates, localized within a spatial region with size of
the order of the magnetic length. The amplitude of the magnetization
oscillations is sharply damped just below because of strong
out of phase magnetic oscillations in the superconducting
condensation energy ,which tend to cancel the normal electron oscillations.
Within the ideal 2D model used it is found, however, that because of the
relative smallness of the quartic and higher order terms in the expansion, the
oscillations amplitude at lower fields does not really damp to zero, but only
reverses sign and remains virtually undamped well below . This
conclusion may be changed if disorder in the vortex lattice, or vortex lines
motion will be taken into account. The reduced QP 'scattering' effect may be
responsible for the apparent crossover from a strong damping of the dHvA
oscillations just below to a weaker damping at lower fields observed
experimentally in several 3D superconductors.Comment: 26 pages, Revtex no Figure
- …