84 research outputs found

    Organizational and Leadership Implications for Transformational Development

    Full text link
    Transformational development is a concept of change that originated in the Christian context but has now become generally used in the work of both secular and faith-based organizations. The growing use of the concept by organizations that are fundamentally different has naturally led to some confusion about what the concept means and what it takes to effectively implement it. In this article, we describe the key features of the concept and how they are important in determining the organizational requirements for its effective implementation. Drawing on a few cases, the paper highlights the centrality of faith in transformational development work

    Virus infection and grazing exert counteracting influences on survivorship of native bunchgrass seedlings competing with invasive exotics

    Get PDF
    1.  Invasive annual grasses introduced by European settlers have largely displaced native grassland vegetation in California and now form dense stands that constrain the establishment of native perennial bunchgrass seedlings. Bunchgrass seedlings face additional pressures from both livestock grazing and barley and cereal yellow dwarf viruses (B/CYDVs), which infect both young and established grasses throughout the state. 2.  Previous work suggested that B/CYDVs could mediate apparent competition between invasive exotic grasses and native bunchgrasses in California. 3.  To investigate the potential significance of virus-mediated mortality for early survivorship of bunchgrass seedlings, we compared the separate and combined effects of virus infection, competition and simulated grazing in a field experiment. We infected two species of young bunchgrasses that show different sensitivity to B/CYDV infection, subjected them to competition with three different densities of exotic annuals crossed with two clipping treatments, and monitored their growth and first-year survivorship. 4.  Although virus infection alone did not reduce first-year survivorship, it halved the survivorship of bunchgrasses competing with exotics. Within an environment in which competition strongly reduces seedling survivorship (as in natural grasslands), virus infection therefore has the power to cause additional seedling mortality and alter patterns of establishment. 5.  Surprisingly, clipping did not reduce bunchgrass survivorship further, but rather doubled it and disproportionately increased survivorship of infected bunchgrasses. 6.  Together with previous work, these findings show that B/CYDVs can be potentially powerful elements influencing species interactions in natural grasslands. 7.  More generally, our findings demonstrate the potential significance of multitrophic interactions in virus ecology. Although sometimes treated collectively as plant ‘predators’, viruses and herbivores may exert influences that are distinctly different, even counteracting

    Journal Watch

    No full text

    Peak-fitting and integration imprecision in the Aerodyne aerosol mass spectrometer: Effects of mass accuracy on location-constrained fits

    No full text
    The errors inherent in the fitting and integration of the pseudo-Gaussian ion peaks in Aerodyne high-resolution aerosol mass spectrometers (HR-AMSs) have not been previously addressed as a source of imprecision for these or similar instruments. This manuscript evaluates the significance of this imprecision and proposes a method for their estimation in routine data analysis. In the first part of this work, it is shown that peak-integration errors are expected to scale linearly with peak height for the constrained-peak-shape fits performed in the HR-AMS. An empirical analysis is undertaken to investigate the most complex source of peak-integration imprecision: the imprecision in fitted peak height, σh. It is shown that the major contributors to σh are the imprecision and bias inherent in the m/z calibration, both of which may arise due to statistical and physical non-idealities of the instrument. A quantitative estimation of these m/z-calibration imprecisions and biases show that they may vary from ion to ion, even for ions of similar m/z. In the second part of this work, the empirical analysis is used to constrain a Monte Carlo approach for the estimation of σh and thus the peak-integration imprecision. The estimated σh for selected well-separated peaks (for which m/z-calibration imprecision and bias could be quantitatively estimated) scaled linearly with peak height as expected (i.e. as n1). In combination with the imprecision in peak-width quantification (which may be easily and directly estimated during quantification), peak-fitting imprecisions therefore dominate counting imprecisions (which scale as n0.5) at high signals. The previous HR-AMS uncertainty model therefore underestimates the overall fitting imprecision even for well-resolved peaks. We illustrate the importance of this conclusion by performing positive matrix factorization on a synthetic HR-AMS data set both with and without its inclusion. In the third part of this work, the Monte Carlo approach is extended to the case of an arbitrary number of overlapping peaks. Here, a modification to the empirically constrained approach was needed, because the ion-specific m/z-calibration bias and imprecision can generally only be estimated for well-resolved peaks. The modification is to simply overestimate the m/z-calibration imprecision in all cases. This overestimation results in only a slight overestimate of σh, while significantly reducing the sensitivity of σh to the unknown, ion-specific m/z-calibration biases. Thus, with only the measured data and an approximate estimate of the order of magnitude of m/z-calibration biases as input, conservative and unbiased estimates of peak-integration imprecisions may be obtained for each peak in any ensemble of overlapping peaks.ISSN:1867-1381ISSN:1867-854
    corecore