1,483 research outputs found
The X-ray Properties of M101 ULX-1 = CXOKM101 J140332.74+542102
We report our analysis of X-ray data on M101 ULX-1, concentrating on high
state Chandra and XMM-Newton observations. We find that the high state of M101
ULX-1 may have a preferred recurrence timescale. If so, the underlying clock
may have periods around 160 or 190 days, or possibly around 45 days. Its
short-term variations resemble those of X-ray binaries at high accretion rate.
If this analogy is correct, we infer that the accretor is a 20-40 Msun object.
This is consistent with our spectral analysis of the high state spectra of M101
ULX-1, from which we find no evidence for an extreme (> 10^40 ergs/s)
luminosity. We present our interpretation in the framework of a high mass X-ray
binary system consisting of a B supergiant mass donor and a large stellar-mass
black hole.Comment: 23 pages, 7 figures, accepted for publication in the Astrophysical
Journa
4U2206+54 - an Unusual High Mass X-ray Binary with a 9.6 Day Orbital Period but No Strong Pulsations
Rossi X-ray Timing Explorer All-Sky Monitor observations of the X-ray source
4U2206+54, previously proposed to be a Be star system, show the X-ray flux to
be modulated with a period of approximately 9.6 days. If the modulation is due
to orbital variability then this would be one of the shortest orbital periods
known for a Be star X-ray source. However, the X-ray luminosity is relatively
modest whereas a high luminosity would be predicted if the system contains a
neutron star accreting from the denser inner regions of a Be star envelope.
Although a 392s pulse period was previously reported from EXOSAT observations,
a reexamination of the EXOSAT light curves does not show this or any other
periodicity. An analysis of archival RXTE Proportional Counter Array
observations also fails to show any X-ray pulsations. We consider possible
models that may explain the properties of this source including a neutron star
with accretion halted at the magnetosphere and an accreting white dwarf.Comment: Accepted for publication in the Astrophysical Journa
Discovery of a new Transient X-ray Pulsar in the Small Magellanic Cloud
Rossi X-Ray Timing Explorer observations of the Small Magellanic Cloud have
revealed a previously unknown transient X-ray pulsar with a pulse period of
95s. Provisionally designated XTE SMC95, the pulsar was detected in three
Proportional Counter Array observations during an outburst spanning 4 weeks in
March/April 1999. The pulse profile is double peaked reaching a pulse fraction
\~0.8. The source is proposed as a Be/neutron star system on the basis of its
pulsations, transient nature and characteristically hard X-ray spectrum. The
2-10 keV X-ray luminosity implied by our observations is > 2x10^37 erg/s which
is consistent with that of normal outbursts seen in Galactic systems. This
discovery adds to the emerging picture of the SMC as containing an extremely
dense population of transient high mass X-ray binaries.Comment: Accepted by A&A. 7 pages, 6 figure
X-ray Pulsars in the Small Magellanic Cloud
XMM-Newton archival data for the Small Magellanic Cloud have been examined
for the presence of previously undetected X-ray pulsars. One such pulsar, with
a period of 202 s, is detected. Its position is consistent with an early B star
in the SMC and we identify it as a high mass X-ray binary (HMXB). In the course
of this study we determined the pulse period of the possible AXP CXOU
J010043.1-721134 to be 8.0 s, correcting an earlier report (Lamb et al 2002b)
of a 5.4 s period for this object. Pulse profiles and spectra for each of these
objects are presented as well as for a recently discovered (Haberl & Pietsch
2004) 263 s X-ray pulsar. Properties of an ensemble of 24 optically identified
HMXB pulsars from the SMC are investigated. The locations of the pulsars and an
additional 22 X-ray pulsars not yet identified as having high mass companions
are located predominately in the young (ages years) star
forming regions of the SMC as expected on the basis of binary evolution models.
We find no significant difference between the distribution of spin periods for
the HMXB pulsars of the SMC compared with that of the Milky Way. For those HMXB
pulsars which have Be companions we note an inverse correlation between spin
period and maximum X-ray flux density. (This anti-correlation has been
previously noted for all X-ray binary pulsars by Stella, White & Rosner 1986).
The anti-correlation for the Be binaries may be a reflection of the fact that
the spin periods and orbital periods of Be HMXBs are correlated. We note a
similar correlation between X-ray luminosity and spin period for the Be HMXB
pulsars of the Milky Way and speculate that exploitation of the correlation
could serve as a distance indicator.Comment: final version accepted in The Astrophysical Journa
INTEGRAL and Swift observations of IGRJ19294+1816 in outburst
IGRJ19294+1816 was discovered by INTEGRAL in 2009 during a bright X-ray
outburst and was classified as a possible Be X-ray binary or supergiant fast
X-ray transient. On 2010 October 28, the source displayed a second X-ray
outburst and a 2 months-long monitoring with Swift was carried out to follow
the evolution of the source X-ray flux during the event. We report on the
INTEGRAL and Swift observations of the second X-ray outburst observed from
IGRJ19294+1816. We detected pulsations in the X-ray emission from the source at
\sim12.5 s up to 50 keV. The source X-ray flux decreased smoothly during the
two months of observation displaying only marginal spectral changes. Due to the
relatively rapid decay of the source X-ray flux, no significant variations of
the source spin period across the event could be measured. This prevented a
firm confirmation of the previously suggested orbital period of the source at
117 d. This periodicity was also searched by using archival Swift /BAT data. We
detected a marginally significant peak in the periodogram and determined the
best period at 116.2\pm0.6 days (estimated chance probability of a spurious
detection 1%). The smooth decline of the source X-ray flux across the two
months of observations after the onset of the second outburst, together with
its relatively low value of the spin period and the absence of remarkable
changes in the spectral parameters (i.e., the absorption column density),
suggests that IGRJ19294+1816 is most likely another member of the Be X-ray
binaries discovered by INTEGRAL and not a supergiant fast X-ray transient.Comment: Accepted for publication in A&A. 7 pages, 10 figure
Monitoring and Discovering X-ray Pulsars in the Small Magellanic Cloud
Regular monitoring of the SMC with RXTE has revealed a huge number of X-ray
pulsars. Together with discoveries from other satellites at least 45 SMC
pulsars are now known. One of these sources, a pulsar with a period of
approximately 7.8 seconds, was first detected in early 2002 and since discovery
it has been found to be in outburst nine times. The outburst pattern clearly
shows a period of 45.1 +/- 0.4 d which is thought to be the orbital period of
this system. Candidate outburst periods have also been obtained for nine other
pulsars and continued monitoring will enable us to confirm these. This large
number of pulsars, all located at approximately the same distance, enables a
wealth of comparative studies. In addition, the large number of pulsars found
(which vastly exceeds the number expected simply by scaling the relative mass
of the SMC and the Galaxy) reveals the recent star formation history of the SMC
which has been influenced by encounters with both the LMC and the Galaxy.Comment: 5 pages, 4 figures, AIP conference proceedings format. Contribution
to "X-ray Timing 2003: Rossi and Beyond." meeting held in Cambridge, MA,
November, 200
RXTE Observations of the Be star X-ray Transient X0726-260 (4U0728-25) - Orbital and Pulse Periods
Rossi X-ray Timing Explorer (RXTE) All Sky Monitor observations of the
transient Be star X-ray source X0726-260 suggest a 34.5 day period. This is
apparently confirmed by a serendipitous RXTE Proportional Counter Array (PCA)
slew detection of the source on 1997 May 5, near the time of a predicted flux
maximum. A subsequent 5000 second pointed observation of X0726-260 with the
RXTE PCA detector was carried out on 1997 June 7, when X0726-260 was predicted
to be bright again, and this revealed pulsations at a period of 103.2 seconds.
If the 34.5 day period is orbital, then the pulse period is surprisingly long
compared to that predicted by the correlation between orbital period and spin
period observed for other Be/neutron star systems. A possible similarity with
GROJ2058+42 is briefly discussed.Comment: 7 pages LateX, 7 figures. To be published in Astrophysical Journal
Letter
Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the Small Magellanic Cloud
We report on the long-term average spin period, rate of change of spin period
and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the
Small Magellanic Cloud. We also collect and calculate parameters of each system
and use these data to determine that all systems contain a neutron star which
is accreting via a disc, rather than a wind, and that if these neutron stars
are near spin equilibrium, then over half of them, including all with spin
periods over about 100 s, have magnetic fields over the quantum critical level
of 4.4x10^13 G. If these neutron stars are not close to spin equilibrium, then
their magnetic fields are inferred to be much lower, of the order of 10^6-10^10
G, comparable to the fields of neutron stars in low-mass X-ray binaries. Both
results are unexpected and have implications for the rate of magnetic field
decay and the isolated neutron star population.Comment: 22 pages, 50 figures; to appear in MNRA
XMM-Newton discovery of transient X-ray pulsar in NGC 1313
We report on the discovery and analysis of the transient X-ray pulsar XMMU
J031747.5-663010 detected in the 2004 November 23 XMM-Newton observation of the
spiral galaxy NGC 1313. The X-ray source exhibits pulsations with a period
P~765.6 s and a nearly sinusoidal pulse shape and pulsed fraction ~38% in the
0.3-7 keV energy range. The X-ray spectrum of XMMU J031747.5-663010 is hard and
is well fitted with an absorbed simple power law of photon index ~1.5 in the
0.3-7 keV energy band. The X-ray properties of the source and the absence of an
optical/UV counterpart brighter than 20 mag allow us to identify XMMU
J031747.5-663010 as an accreting X-ray pulsar located in NGC 1313. The
estimated absorbed 0.3-7 keV luminosity of the source L~1.6\times 10^{39}
ergs/s, makes it one of the brightest X-ray pulsars known. Based on the
relatively long pulse period and transient behaviour of the source, we classify
it as a Be binary X-ray pulsar candidate. XMMU J031747.5-663010 is the second
X-ray pulsar detected outside the Local Group, after transient 18 s pulsating
source CXOU J073709.1+653544 discovered in the nearby spiral galaxy NGC 2403.Comment: 6 pages, 4 figures. Accepted for publication in MNRAS. Updated to
match the accepted versio
The binary period and outburst behaviour of the SMC X-ray binary pulsar system SXP504
A probable binary period has been detected in the optical counterpart to the
X-ray source CXOU J005455.6-724510 = RX J0054.9-7245 = AXJ0054.8-7244 = SXP504
in the Small Magellanic Cloud. This source was detected by Chandra on 04 Jul
2002 and subsequently observed by XMM-Newton on 18 Dec 2003. The source is
coincident with an Optical Gravitational Lensing (OGLE) object in the
lightcurves of which several optical outburst peaks are visible at ~ 268 day
intervals. Timing analysis shows a period of 268.6 +/- 0.1 days at > 99%
significance. Archival Rossi X-ray Timing Explorer (RXTE) data for the 504s
pulse-period has revealed detections which correspond closely with predicted or
actual peaks in the optical data. The relationship between this orbital period
and the pulse period of 504s is within the normal variance found in the Corbet
diagram.Comment: Accepted by MNRAS. 1 LATEX page. 4 figure
- …