2,048 research outputs found
Spin-Down of the Long-Period Accreting Pulsar 4U 2206+54
4U 2206+54 is a high mass X-ray binary which has been suspected to contain a
neutron star accreting from the wind of its companion BD +53 2790. Reig et al.
have recently detected 5560 s period pulsations in both RXTE and INTEGRAL
observations which they conclude are due to the spin of the neutron star. We
present observations made with Suzaku which are contemporaneous with their RXTE
observation of this source. We find strong pulsations at a period of 5554 +/- 9
s in agreement with their results. We also present a reanalysis of BeppoSAX
observations of 4U 2206+54 made in 1998, in which we find strong pulsations at
a period of 5420 +/- 28 seconds, revealing a spin-down trend in this
long-period accreting pulsar. Analysis of these data suggests that the neutron
star in this system is an accretion-powered magnetar.Comment: Submitted to The Astrophysical Journa
Diverse Long-Term Variability of Five Candidate High-Mass X-ray Binaries from Swift Burst Alert Telescope Observations
We present an investigation of long-term modulation in the X-ray light curves
of five little-studied candidate high-mass X-ray binaries using the Swift Burst
Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at
periods of 49.6 and 44 days, respectively, which are interpreted as orbital
periods of Be star systems. For IGR J14488-5942, observations with Swift X-ray
Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s
pulsations were previously found with XMM. Swift J1816.7-1613 exhibits
complicated behavior. The strongest peak in the power spectrum is at a period
near 150 days, but this conflicts with a determination of a period of 118.5
days by La Parola et al. (2014). AX J1820.5-1434 has been proposed to exhibit
modulation near 54 days, but the extended BAT observations suggest modulation
at slightly longer than double this at approximately 111 days. There appears to
be a long-term change in the shape of the modulation near 111 days, which may
explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was
previously proposed to be a Be star system with an orbital period of ~30 days
from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The
origins of these periods are unclear, although they might be the orbital period
and a superorbital period respectively. For all five sources, the long-term
variability, together with the combination of orbital and proposed pulse
periods, suggests that the sources contain Be star mass donors.Comment: Accepted for publication in The Astrophysical Journal. 15 pages, 27
figures. (v2 corrects citation
4U2206+54 - an Unusual High Mass X-ray Binary with a 9.6 Day Orbital Period but No Strong Pulsations
Rossi X-ray Timing Explorer All-Sky Monitor observations of the X-ray source
4U2206+54, previously proposed to be a Be star system, show the X-ray flux to
be modulated with a period of approximately 9.6 days. If the modulation is due
to orbital variability then this would be one of the shortest orbital periods
known for a Be star X-ray source. However, the X-ray luminosity is relatively
modest whereas a high luminosity would be predicted if the system contains a
neutron star accreting from the denser inner regions of a Be star envelope.
Although a 392s pulse period was previously reported from EXOSAT observations,
a reexamination of the EXOSAT light curves does not show this or any other
periodicity. An analysis of archival RXTE Proportional Counter Array
observations also fails to show any X-ray pulsations. We consider possible
models that may explain the properties of this source including a neutron star
with accretion halted at the magnetosphere and an accreting white dwarf.Comment: Accepted for publication in the Astrophysical Journa
The binary period and outburst behaviour of the SMC X-ray binary pulsar system SXP504
A probable binary period has been detected in the optical counterpart to the
X-ray source CXOU J005455.6-724510 = RX J0054.9-7245 = AXJ0054.8-7244 = SXP504
in the Small Magellanic Cloud. This source was detected by Chandra on 04 Jul
2002 and subsequently observed by XMM-Newton on 18 Dec 2003. The source is
coincident with an Optical Gravitational Lensing (OGLE) object in the
lightcurves of which several optical outburst peaks are visible at ~ 268 day
intervals. Timing analysis shows a period of 268.6 +/- 0.1 days at > 99%
significance. Archival Rossi X-ray Timing Explorer (RXTE) data for the 504s
pulse-period has revealed detections which correspond closely with predicted or
actual peaks in the optical data. The relationship between this orbital period
and the pulse period of 504s is within the normal variance found in the Corbet
diagram.Comment: Accepted by MNRAS. 1 LATEX page. 4 figure
X-ray Pulsars in the Small Magellanic Cloud
XMM-Newton archival data for the Small Magellanic Cloud have been examined
for the presence of previously undetected X-ray pulsars. One such pulsar, with
a period of 202 s, is detected. Its position is consistent with an early B star
in the SMC and we identify it as a high mass X-ray binary (HMXB). In the course
of this study we determined the pulse period of the possible AXP CXOU
J010043.1-721134 to be 8.0 s, correcting an earlier report (Lamb et al 2002b)
of a 5.4 s period for this object. Pulse profiles and spectra for each of these
objects are presented as well as for a recently discovered (Haberl & Pietsch
2004) 263 s X-ray pulsar. Properties of an ensemble of 24 optically identified
HMXB pulsars from the SMC are investigated. The locations of the pulsars and an
additional 22 X-ray pulsars not yet identified as having high mass companions
are located predominately in the young (ages years) star
forming regions of the SMC as expected on the basis of binary evolution models.
We find no significant difference between the distribution of spin periods for
the HMXB pulsars of the SMC compared with that of the Milky Way. For those HMXB
pulsars which have Be companions we note an inverse correlation between spin
period and maximum X-ray flux density. (This anti-correlation has been
previously noted for all X-ray binary pulsars by Stella, White & Rosner 1986).
The anti-correlation for the Be binaries may be a reflection of the fact that
the spin periods and orbital periods of Be HMXBs are correlated. We note a
similar correlation between X-ray luminosity and spin period for the Be HMXB
pulsars of the Milky Way and speculate that exploitation of the correlation
could serve as a distance indicator.Comment: final version accepted in The Astrophysical Journa
Orbital Period Determinations for Four SMC Be/X-ray Binaries
We present an optical and X-ray study of four Be/X-ray binaries located in
the Small Magellanic Cloud (SMC). OGLE I-band data of up to 11 years of
semi-continuous monitoring has been analysed for SMC X-2, SXP172 and SXP202B,
providing both a measurement of the orbital period (Porb = 18.62, 68.90, and
229.9 days for the pulsars respectively) and a detailed optical orbital profile
for each pulsar. For SXP172 this has allowed a direct comparison of the optical
and X-ray emission seen through regular RXTE monitoring, revealing that the
X-ray outbursts precede the optical by around 7 days. Recent X-ray studies by
XMM-Newton have identified a new source in the vicinity of SXP15.3 raising
doubt on the identification of the optical counterpart to this X-ray pulsar.
Here we present a discussion of the observations that led to the proposal of
the original counterpart and a detailed optical analysis of the counterpart to
the new X-ray source, identifying a 21.7 d periodicity in the OGLE I-band data.
The optical characteristics of this star are consistent with that of a SMC
Be/X-ray binary. However, this star was rejected as the counterpart to SXP15.3
in previous studies due to the lack of H{\alpha} emission.Comment: Accepted for publication in MNRAS, 11 pages, 17 figure
Total Synthesis of Neurymenolide A Based on a Gold-Catalyzed Synthesis of 4-Hydroxy-2-pyrones
Treat me gently: For a selective synthesis of the unusually sensitive cyclophanic α-pyrone neurymenolide A, the chosen catalysts must be able to distinguish between six different sites of unsaturation, without scrambling any of the skipped π systems. This challenge was met with a new gold-catalyzed pyrone synthesis in combination with a molybdenum-catalyzed ring-closing alkyne metathesis
A major outburst from the X-ray binary RX J0520.5-6932
We report on the analysis of 8 years of MAssive Compact Halo Objects (MACHO)
data for the source RX J0520.5-6932. A regular period of 24.4 days has been
confirmed, however this is manifest almost entirely in the red part of the
spectrum. A major outburst, lasting approximately 200 days, was observed which
increased the apparent brightness of the object by approximately 0.15
magnitudes without significantly altering its V-R colour index. This outburst
was also seen in X-ray data. The evidence from this analysis points to the
identification of this object as a Be/X-ray binary with a periodically variable
circumstellar disk and a very early optical counterpart.Comment: Paper has been accepted by MNRA
- …