1,889 research outputs found
Marginal and simultaneous predictive classification using stratified graphical models
An inductive probabilistic classification rule must generally obey the
principles of Bayesian predictive inference, such that all observed and
unobserved stochastic quantities are jointly modeled and the parameter
uncertainty is fully acknowledged through the posterior predictive
distribution. Several such rules have been recently considered and their
asymptotic behavior has been characterized under the assumption that the
observed features or variables used for building a classifier are conditionally
independent given a simultaneous labeling of both the training samples and
those from an unknown origin. Here we extend the theoretical results to
predictive classifiers acknowledging feature dependencies either through
graphical models or sparser alternatives defined as stratified graphical
models. We also show through experimentation with both synthetic and real data
that the predictive classifiers based on stratified graphical models have
consistently best accuracy compared with the predictive classifiers based on
either conditionally independent features or on ordinary graphical models.Comment: 18 pages, 5 figure
Computing Exact Clustering Posteriors with Subset Convolution
An exponential-time exact algorithm is provided for the task of clustering n
items of data into k clusters. Instead of seeking one partition, posterior
probabilities are computed for summary statistics: the number of clusters, and
pairwise co-occurrence. The method is based on subset convolution, and yields
the posterior distribution for the number of clusters in O(n * 3^n) operations,
or O(n^3 * 2^n) using fast subset convolution. Pairwise co-occurrence
probabilities are then obtained in O(n^3 * 2^n) operations. This is
considerably faster than exhaustive enumeration of all partitions.Comment: 6 figure
Orthogonal parallel MCMC methods for sampling and optimization
Monte Carlo (MC) methods are widely used for Bayesian inference and
optimization in statistics, signal processing and machine learning. A
well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms.
In order to foster better exploration of the state space, specially in
high-dimensional applications, several schemes employing multiple parallel MCMC
chains have been recently introduced. In this work, we describe a novel
parallel interacting MCMC scheme, called {\it orthogonal MCMC} (O-MCMC), where
a set of "vertical" parallel MCMC chains share information using some
"horizontal" MCMC techniques working on the entire population of current
states. More specifically, the vertical chains are led by random-walk
proposals, whereas the horizontal MCMC techniques employ independent proposals,
thus allowing an efficient combination of global exploration and local
approximation. The interaction is contained in these horizontal iterations.
Within the analysis of different implementations of O-MCMC, novel schemes in
order to reduce the overall computational cost of parallel multiple try
Metropolis (MTM) chains are also presented. Furthermore, a modified version of
O-MCMC for optimization is provided by considering parallel simulated annealing
(SA) algorithms. Numerical results show the advantages of the proposed sampling
scheme in terms of efficiency in the estimation, as well as robustness in terms
of independence with respect to initial values and the choice of the
parameters
- …
