270 research outputs found
Predators on marine fish farms in Tasmania
Marine aquaculture of the salmonids atlantic salmon (Salrno salar) and rainbow trout (Salmo gairdneri) is a rapidly growing industry in Tasmania. There is considerable damage to the fish on these farms by avian and mammalian predators. The mode by which these predators attack the fish on the farms allows for practical methods to reduce the loss of fish. Physically excluding predators from the fish is ultimately the only way to prevent this loss entirely. A total of six predators that interact with the farms are described and the necessity for the protection methods to be incorporated into the design of the farms prior to farm development is emphasised
Continuous-time quantum walk on integer lattices and homogeneous trees
This paper is concerned with the continuous-time quantum walk on Z, Z^d, and
infinite homogeneous trees. By using the generating function method, we compute
the limit of the average probability distribution for the general isotropic
walk on Z, and for nearest-neighbor walks on Z^d and infinite homogeneous
trees. In addition, we compute the asymptotic approximation for the probability
of the return to zero at time t in all these cases.Comment: The journal version (save for formatting); 19 page
The Nystrom plus Correction Method for Solving Bound State Equations in Momentum Space
A new method is presented for solving the momentum-space Schrodinger equation
with a linear potential. The Lande-subtracted momentum space integral equation
can be transformed into a matrix equation by the Nystrom method. The method
produces only approximate eigenvalues in the cases of singular potentials such
as the linear potential. The eigenvalues generated by the Nystrom method can be
improved by calculating the numerical errors and adding the appropriate
corrections. The end results are more accurate eigenvalues than those generated
by the basis function method. The method is also shown to work for a
relativistic equation such as the Thompson equation.Comment: Revtex, 21 pages, 4 tables, to be published in Physical Review
Electrostatics in a Schwarzschild black hole pierced by a cosmic string
We explicitly determine the expression of the electrostatic potential
generated by a point charge at rest in the Schwarzschild black hole pierced by
a cosmic string. We can then calculate the electrostatic self-energy. From
this, we find again the upper entropy bound for a charged object by employing
thermodynamics of the black hole.Comment: Latex, 8 pages, 1 figure in late
Takagi-Taupin Description of X-ray Dynamical Diffraction from Diffractive Optics with Large Numerical Aperture
We present a formalism of x-ray dynamical diffraction from volume diffractive
optics with large numerical aperture and high aspect ratio, in an analogy to
the Takagi-Taupin equations for strained single crystals. We derive a set of
basic equations for dynamical diffraction from volume diffractive optics, which
enable us to study the focusing property of these optics with various grating
profiles. We study volume diffractive optics that satisfy the Bragg condition
to various degrees, namely flat, tilted and wedged geometries, and derive the
curved geometries required for ultimate focusing. We show that the curved
geometries satisfy the Bragg condition everywhere and phase requirement for
point focusing, and effectively focus hard x-rays to a scale close to the
wavelength.Comment: 18 pages, 12 figure
Black hole polarization and new entropy bounds
Zaslavskii has suggested how to tighten Bekenstein's bound on entropy when
the object is electrically charged. Recently Hod has provided a second tighter
version of the bound applicable when the object is rotating. Here we derive
Zaslavskii's optimized bound by considering the accretion of an ordinary
charged object by a black hole. The force originating from the polarization of
the black hole by a nearby charge is central to the derivation of the bound
from the generalized second law. We also conjecture an entropy bound for
charged rotating objects, a synthesis of Zaslavskii's and Hod's. On the basis
of the no hair principle for black holes, we show that this last bound cannot
be tightened further in a generic way by knowledge of ``global'' conserved
charges, e.g., baryon number, which may be borne by the object.Comment: 21 pages, RevTex, Regularization of potential made clearer. Error in
energy of the particle corrected with no consequence for final conclusions.
New references adde
Quasiholes and fermionic zero modes of paired fractional quantum Hall states: the mechanism for nonabelian statistics
The quasihole states of several paired states, the Pfaffian, Haldane-Rezayi,
and 331 states, which under certain conditions may describe electrons at
filling factor or 5/2, are studied, analytically and numerically, in
the spherical geometry, for the Hamiltonians for which the ground states are
known exactly. We also find all the ground states (without quasiparticles) of
these systems in the toroidal geometry. In each case, a complete set of
linearly-independent functions that are energy eigenstates of zero energy is
found explicitly. For fixed positions of the quasiholes, the number of
linearly-independent states is for the Pfaffian, for the
Haldane-Rezayi state; these degeneracies are needed if these systems are to
possess nonabelian statistics, and they agree with predictions based on
conformal field theory. The dimensions of the spaces of states for each number
of quasiholes agree with numerical results for moderate system sizes. The
effects of tunneling and of the Zeeman term are discussed for the 331 and
Haldane-Rezayi states, as well as the relation to Laughlin states of electron
pairs. A model introduced by Ho, which was supposed to connect the 331 and
Pfaffian states, is found to have the same degeneracies of zero-energy states
as the 331 state, except at its Pfaffian point where it is much more highly
degenerate than either the 331 or the Pfaffian. We introduce a modification of
the model which has the degeneracies of the 331 state everywhere including the
Pfaffian point; at the latter point, tunneling reduces the degeneracies to
those of the Pfaffian state. An experimental difference is pointed out between
the Laughlin states of electron pairs and the other paired states, in the
current-voltage response when electrons tunnel into the edge. And there's more.Comment: 43 pages, requires RevTeX. The 14 figures and 2 tables are available
on request at [email protected] (include mailing address
Electric force lines of the double Reissner-Nordstrom exact solution
Recently, Alekseev and Belinski have presented a new exact solution of the
Einstein-Maxwell equations which describes two Reissner-Nordstrom (RN) sources
in reciprocal equilibrium (no struts nor strings); one source is a naked
singularity, the other is a black hole: this is the only possible configuration
for separable object, apart from the well-known extreme case ().
In the present paper, after a brief summary of this solution, we study in
some detail the coordinate systems used and the main features of the
gravitational and electric fields. In particular we graph the plots of the
electric force lines in three qualitatively different situations: equal-signed
charges, opposite charges and the case of a naked singularity near a neutral
black hole.Comment: 19 pages, 7 figures, accepted by IJMP
The self-force on a static scalar test-charge outside a Schwarzschild black hole
The finite part of the self-force on a static scalar test-charge outside a
Schwarzschild black hole is zero. By direct construction of Hadamard's
elementary solution, we obtain a closed-form expression for the minimally
coupled scalar field produced by a test-charge held fixed in Schwarzschild
spacetime. Using the closed-form expression, we compute the necessary external
force required to hold the charge stationary. Although the energy associated
with the scalar field contributes to the renormalized mass of the particle (and
thereby its weight), we find there is no additional self-force acting on the
charge. This result is unlike the analogous electrostatic result, where, after
a similar mass renormalization, there remains a finite repulsive self-force
acting on a static electric test-charge outside a Schwarzschild black hole. We
confirm our force calculation using Carter's mass-variation theorem for black
holes. The primary motivation for this calculation is to develop techniques and
formalism for computing all forces - dissipative and non-dissipative - acting
on charges and masses moving in a black-hole spacetime. In the Appendix we
recap the derivation of the closed-form electrostatic potential. We also show
how the closed-form expressions for the fields are related to the infinite
series solutions.Comment: RevTeX, To Appear in Phys. Rev.
Multiphoton detachment of electrons from negative ions
A simple analytical solution for the problem of multiphoton detachment from
negative ions by a linearly polarized laser field is found. It is valid in the
wide range of intensities and frequencies of the field, from the perturbation
theory to the tunneling regime, and is applicable to the excess-photon as well
as near-threshold detachment. Practically, the formulae are valid when the
number of photons is greater than two. They produce the total detachment rates,
relative intensities of the excess-photon peaks, and photoelectron angular
distributions for the hydrogen and halogen negative ions, in agreement with
those obtained in other, more numerically involved calculations in both
perturbative and non-perturbative regimes. Our approach explains the extreme
sensitivity of the multiphoton detachment probability to the asymptotic
behaviour of the bound-state wave function. Rapid oscillations in the angular
dependence of the -photon detachment probability are shown to arise due to
interference of the two classical trajectories which lead to the same final
state after the electron emerges at the opposite sides of the atom when the
field is close to maximal.Comment: 27 pages, Latex, and PostScript figures fig1.ps, fig2.ps, fig3.ps,
accepted for publication in Phys. Rev.
- …