32 research outputs found

    Restoring autophagic function: a case for type 2 diabetes mellitus drug repurposing in Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is a predominantly idiopathic pathological condition characterized by protein aggregation phenomena, whose main component is alpha-synuclein. Although the main risk factor is ageing, numerous evidence points to the role of type 2 diabetes mellitus (T2DM) as an etiological factor. Systemic alterations classically associated with T2DM like insulin resistance and hyperglycemia modify biological processes such as autophagy and mitochondrial homeostasis. High glucose levels also compromise protein stability through the formation of advanced glycation end products, promoting protein aggregation processes. The ability of antidiabetic drugs to act on pathways impaired in both T2DM and PD suggests that they may represent a useful tool to counteract the neurodegeneration process. Several clinical studies now in advanced stages are looking for confirmation in this regard

    An alien metabolite vs. a synthetic chemical hazard: an ecotoxicological comparison in the Mediterranean blue mussel

    Get PDF
    Bioactive natural products from marine invasive species may dramatically impact native communities, while many synthetic pharmaceutical drugs are released into the marine environment and have long-lasting harmful effects on aquatic life. Sometimes, metabolites from alien species and synthetic compounds share similar mechanisms of action, suggesting comparable ecotoxicological impacts. This applies to the alkaloid caulerpin (CAU) from the green alga Caulerpa cylindracea, highly invasive in the Mediterranean Sea, and to the synthetic lipid-lowering drug fenofibrate (FFB), both acting as agonists of peroxisome proliferator-activated receptors (PPARs). Analogies with FFB, which is widely considered hazardous to the aquatic environment, have led to concerns about the ecotoxicological potential of CAU. The problem has implications for public health as CAU is well known to enter the food web accumulating in fish of commercial importance. Here, we compared the effects of FFB and CAU through biochemical and histopathological analysis on a relevant bioindicator molluscan species, the mussel Mytilus galloprovincialis. Under laboratory conditions, mussels were fed with food enriched with CAU or FFB. After treatment, biochemical markers were analyzed revealing metabolic capacity impairments, cellular damage, and changes in acetylcholinesterase activity in mussels fed with FFB-enriched food. NMR-based metabolomic studies also showed significant alterations in the metabolic profiles of FFB-treated mussels. In addition, dietary administration of FFB produced morphological alterations in the mussels' gills and digestive tubules. Obtained results confirm that FFB is harmful to aquatic life and that its release into the environment should be avoided. Conversely, dietary treatment with CAU did not produce any significant alterations in the mussels. Overall, our results pave the way for the possible valorization of the huge biomass from one of the world's worst invasive species to obtain CAU, a natural product of interest in drug discovery.publishe

    How to obtain an integrated picture of the molecular networks involved in adaptation to microgravity in different biological systems?

    Get PDF
    Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, “Biology in Space and Analogue Environments”, focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: “How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?” The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed

    How are cell and tissue structure and function influenced by gravity and what are the gravity perception mechanisms?

    Get PDF
    Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap “Biology in Space and Analogue Environments” focusing on “How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?” The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed

    How do gravity alterations affect animal and human systems at a cellular/tissue level?

    Get PDF
    The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: “How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?” This is one of the five major scientific issues of the ESA roadmap “Biology in Space and Analogue Environments”. Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects

    How do gravity alterations affect animal and human systems at a cellular/tissue level?

    Get PDF
    The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects

    Education nursing students' in Palliative Care and Pain Therapy: an observational study

    Full text link
    Background and aim: University education plays an important role in the preparation of future nurses, especially in the care of dying patients, which is one of the most emotionally engaging aspects. The objectives of the study were to describe the attitudes of students in end-of-life care and to analyze the possible relationship with some socio-demographic variables, through an observational study. Methods: Preliminarily, an analysis of the educational context of the Nursing Course  of the University of Parma was started, through a comparison of the university course with the recommendations of the MIUR concerning the teaching and learning of Palliative Care and Pain Therapy. Subsequently, a questionnaire containing the Frommelt Attitude Toward Care of the Dying Scale Form B and some socio-demographic context variables was administered to a sample of 109 students belonging to the CoS of Nursing in Parma. Results: From the data collected, it emerged that university planning partly reflects the recommendations of the MIUR and how, on average, nursing students have described positive attitudes in all the dimensions investigated. Interesting is the presence of a positive relationship between the personal experiences of bereavement and the attitudes of the students. Conclusions: Nurses are essential in ensuring the quality of care provided to patients at the end of life; Nursing training in Palliative Care and Pain Therapy should include a complete and varied program (frontal activity, simulation, internship paths...) in order to develop positive student attitudes associated with high levels of satisfaction and improvement of the quality of care provided

    Global DNA hypomethylation is an early event in Helicobacter pylori-related gastric carcinogenesis.

    Full text link
    Cancer, particularly gastric cancer (GC), is prevalently an epigenetic phenomenon that is dependent on an altered DNA methylation pattern. In gastric carcinogenesis, many genes show aberrant methylation; however, none of them may be used as a biomarker of cancer risk and progression. The authors aimed to evaluate the global DNA methylation of gastric mucosa in Helicobacter pylori (Hp)-related chronic gastritis, in GC and in 10 patients with preneoplastic lesions (ie, atrophy and intestinal metaplasia) followed up for 10 years
    corecore