2,026 research outputs found
Probing dissipation mechanisms in BL Lac jets through X-ray polarimetry
The dissipation of energy flux in blazar jets plays a key role in the
acceleration of relativistic particles. Two possibilities are commonly
considered for the dissipation processes, magnetic reconnection -- possibly
triggered by instabilities in magnetically-dominated jets -- , or shocks -- for
weakly magnetized flows. We consider the polarimetric features expected for the
two scenarios analyzing the results of state-of-the-art simulations. For the
magnetic reconnection scenario we conclude, using results from global
relativistic MHD simulations, that the emission likely occurs in turbulent
regions with unstructured magnetic fields, although the simulations do not
allow us to draw firm conclusions. On the other hand, with local
particle-in-cell simulations we show that, for shocks with a magnetic field
geometry suitable for particle acceleration, the self-generated magnetic field
at the shock front is predominantly orthogonal to the shock normal and becomes
quasi-parallel downstream. Based on this result we develop a simplified model
to calculate the frequency-dependent degree of polarization, assuming that
high-energy particles are injected at the shock and cool downstream. We apply
our results to HBLs, blazars with the maximum of their synchrotron output at
UV-soft X-ray energies. While in the optical band the predicted degree of
polarization is low, in the X-ray emission it can ideally reach 50\%,
especially during active/flaring states. The comparison between measurements in
the optical and in the X-ray band made during active states (feasible with the
planned {\it IXPE} satellite) are expected to provide valuable constraints on
the dissipation and acceleration processes.Comment: 9 pages, 6 figures, accepted for publication by MNRA
Reduced magnetohydrodynamic theory of oblique plasmoid instabilities
The three-dimensional nature of plasmoid instabilities is studied using the
reduced magnetohydrodynamic equations. For a Harris equilibrium with guide
field, represented by \vc{B}_o = B_{po} \tanh (x/\lambda) \hat{y} + B_{zo}
\hat{z}, a spectrum of modes are unstable at multiple resonant surfaces in the
current sheet, rather than just the null surface of the polodial field , which is the only resonant surface in 2D or in
the absence of a guide field. Here is the asymptotic value of the
equilibrium poloidal field, is the constant equilibrium guide field,
and is the current sheet width. Plasmoids on each resonant surface
have a unique angle of obliquity . The resonant
surface location for angle is x_s = - \lambda \arctanh (\tan \theta
B_{zo}/B_{po}), and the existence of a resonant surface requires . The most unstable angle is oblique, i.e. and , in the constant- regime, but parallel, i.e.
and , in the nonconstant- regime. For a fixed angle
of obliquity, the most unstable wavenumber lies at the intersection of the
constant- and nonconstant- regimes. The growth rate of this mode is
, in which
, is the Alfv\'{e}n speed, is the current sheet
length, and is the Lundquist number. The number of plasmoids scales as .Comment: 9 pages, 8 figures, to be published in Physics of Plasma
Interpretation of the I-Regime and transport associated with relevant heavy particle modes
The excitation of a novel kind of heavy particle [1, 2] mode at the edge of the plasma column is
considered as the signature of the I-con nement Regime [3{7]. The outward transport of impurities
produced by this mode is in fact consistent with the observed expulsion of them from the main
body of the plasma column (a high degree of plasma purity is a necessary feature for fusion burning
plasmas capable of approaching ignition). Moreover, the theoretically predicted mode phase velocity,
in the direction of the electron diamagnetic velocity, has been con rmed by relevant experimental
analyses [8] of the excited
uctuations (around 200 kHz). The plasma \spontaneous rotation" in the
direction of the ion diamagnetic velocity is also consistent, according to the Accretion Theory [9] of
this phenomenon, with the direction of the mode phase velocity. Another feature of the mode that
predicted by the theory is that the I-Regime exhibits a knee of the ion temperature at the edge of
the plasma column but not one of the particle density as the mode excitation factor is the relative
main ion temperature gradient exceeding the local relative density gradient. The net plasma current
density appearing in the saturation stage of the relevant instability, where the induced particle and
energy
uxes are drastically reduced, is associated with the signi cant amplitudes of the poloidal
magnetic eld
uctuations [6, 7] observed to accompany the density
uctuations. The theoretical
implications of the signi cant electron temperature
uctuations [10] observed are discussed.United States. Dept. of Energ
Time dependent numerical model for the emission of radiation from relativistic plasma
We describe a numerical model constructed for the study of the emission of
radiation from relativistic plasma under conditions characteristic, e.g., to
gamma-ray bursts (GRB's) and active galactic nuclei (AGN's). The model solves
self consistently the kinetic equations for e^\pm and photons, describing
cyclo-synchrotron emission, direct Compton and inverse Compton scattering, pair
production and annihilation, including the evolution of high energy
electromagnetic cascades. The code allows calculations over a wide range of
particle energies, spanning more than 15 orders of magnitude in energy and time
scales. Our unique algorithm, which enables to follow the particle
distributions over a wide energy range, allows to accurately derive spectra at
high energies, >100 \TeV. We present the kinetic equations that are being
solved, detailed description of the equations describing the various physical
processes, the solution method, and several examples of numerical results.
Excellent agreement with analytical results of the synchrotron-SSC model is
found for parameter space regions in which this approximation is valid, and
several examples are presented of calculations for parameter space regions
where analytic results are not available.Comment: Minor changes; References added, discussion on observational status
added. Accepted for publication in Ap.
Iron K Lines from Gamma Ray Bursts
We present models for reprocessing of an intense flux of X-rays and gamma
rays expected in the vicinity of gamma ray burst sources. We consider the
transfer and reprocessing of the energetic photons into observable features in
the X-ray band, notably the K lines of iron. Our models are based on the
assumption that the gas is sufficiently dense to allow the microphysical
processes to be in a steady state, thus allowing efficient line emission with
modest reprocessing mass and elemental abundances ranging from solar to
moderately enriched. We show that the reprocessing is enhanced by
down-Comptonization of photons whose energy would otherwise be too high to
absorb on iron, and that pair production can have an effect on enhancing the
line production. Both "distant" reprocessors such as supernova or wind remnants
and "nearby" reprocessors such as outer stellar envelopes can reproduce the
observed line fluxes with Fe abundances 30-100 times above solar, depending on
the incidence angle. The high incidence angles required arise naturally only in
nearby models, which for plausible values can reach Fe line to continuum ratios
close to the reported values.Comment: 37 pages, 10 figures. Ap. J in pres
Radiation mechanisms and geometry of Cygnus X-1 in the soft state
We present X-ray/gamma-ray spectra of Cyg X-1 observed during the transition
from the hard to the soft state and in the soft state by ASCA, RXTE and OSSE in
1996 May and June. The spectra consist of a dominant soft component below ~2
keV and a power-law-like continuum extending to at least ~800 keV. We interpret
them as emission from an optically-thick, cold accretion disc and from an
optically-thin, non-thermal corona above the disc. A fraction f ~ 0.6 of total
available power is dissipated in the corona. We model the soft component by
multi-colour blackbody disc emission taking into account the torque-free
inner-boundary condition. If the disc extends down to the minimum stable orbit,
the ASCA/RXTE data yield the most probable black hole mass of about 10 solar
masses and an accretion rate about 0.5 L_E/c^2, locating Cyg X-1 in the soft
state in the upper part of the stable, gas-pressure dominated, accretion-disc
solution branch. The spectrum of the corona is well modelled by repeated
Compton scattering of seed photons from the disc off electrons with a hybrid,
thermal/non-thermal distribution. The electron distribution can be
characterized by a Maxwellian with an equilibrium temperature of kT ~ 30--50
keV and a Thomson optical depth of ~0.3 and a quasi-power-law tail. The
compactness of the corona is between 2 and 7, and a presence of a significant
population of electron-positron pairs is ruled out. We find strong signatures
of Compton reflection from a cold and ionized medium, presumably an accretion
disc, with an apparent reflector solid angle ~0.5--0.7. The reflected continuum
is accompanied by a broad iron K-alpha line.Comment: 18 pages, 12 figures, 2 landscape tables in a separate file. Accepted
to MNRA
Comparison between resistive and collisionless double tearing modes for nearby resonant surfaces
The linear instability and nonlinear dynamics of collisional (resistive) and
collisionless (due to electron inertia) double tearing modes (DTMs) are
compared with the use of a reduced cylindrical model of a tokamak plasma. We
focus on cases where two q = 2 resonant surfaces are located a small distance
apart. It is found that regardless of the magnetic reconnection mechanism,
resistivity or electron inertia, the fastest growing linear eigenmodes may have
high poloidal mode numbers m ~ 10. The spectrum of unstable modes tends to be
broader in the collisionless case. In the nonlinear regime, it is shown that in
both cases fast growing high-m DTMs lead to an annular collapse involving small
magnetic island structures. In addition, collisionless DTMs exhibit multiple
reconnection cycles due to reversibility of collisionless reconnection and
strong ExB flows. Collisionless reconnection leads to a saturated stable state,
while in the collisional case resistive decay keeps the system weakly dynamic
by driving it back towards the unstable equilibrium maintained by a source
term.Comment: 15 pages, 9 figure
- …