123 research outputs found

    Defects in muscarinic receptor-coupled signal transduction in isolated parotid gland cells after in vivo irradiation: evidence for a non-DNA target of radiation

    Get PDF
    Radiation-induced dysfunction of normal tissue, an unwanted side effect of radiotherapeutic treatment of cancer, is usually considered to be caused by impaired loss of cell renewal due to sterilisation of stem cells. This implies that the onset of normal tissue damage is usually determined by tissue turnover rate. Salivary glands are a clear exception to this rule: they have slow turnover rates (>60 days), yet develop radiation-induced dysfunction within hours to days. We showed that this could not be explained by a hypersensitivity to radiation-induced apoptosis or necrosis of the differentiated cells. In fact, salivary cells are still capable of amylase secretion shortly after irradiation while at the same time water secretion seems specifically and severely impaired. Here, we demonstrate that salivary gland cells isolated after in vivo irradiation are impaired in their ability to mobilise calcium from intracellular stores (Ca2+i), the driving force for water secretion, after exposure to muscarinic acetylcholine receptor agonists. Using radioligand-receptor-binding assays it is shown that radiation caused no changes in receptor density, receptor affinity nor in receptor-G-protein coupling. However, muscarinic acetylcholine agonist-induced activation of protein kinase C alpha (PKCα), measured as translocation to the plasma membrane, was severely affected in irradiated cells. Also, the phorbol ester PMA could no longer induce PKCα translocation in irradiated cells. Our data hence indicate that irradiation specifically interferes with PKCα association with membranes, leading to impairment of intracellular signalling. To the best of our knowledge, these data for the first time suggest that, the cells' capacity to respond to a receptor agonist is impaired after irradiation

    Early to late sparing of radiation damage to the parotid gland by adrenergic and muscarinic receptor agonists

    Get PDF
    Damage to salivary glands after radiotherapeutic treatment of head and neck tumours can severely impair the quality of life of the patients. In the current study we have investigated the early-to-late pathogenesis of the parotid gland after radiation. Also the ability to ameliorate the damage using pretreatment with adrenergic or muscarinic receptor agonists is studied. Rats were locally irradiated with or without i.p. pretreatment with phenylephrine (α-adrenoceptor agonist, 5 mg kg−1), isoproterenol (β-adrenoceptor agonist, 5 mg kg−1), pilocarpine (4 mg kg−1), methacholine (3.75 mg kg−1) (muscarinic receptor agonists) or methacholine plus phenylephrine. Parotid salivary flow rate, amylase secretion, the number of cells and gland histology were monitored sequentially up to 240 days postirradiation. The effects were described in 4 distinct phases. The first phase (0–10 days) was characterised by a rapid decline in flow rate without changes in amylase secretion or acinar cell number. The second phase (10–60 days) consists of a decrease in amylase secretion and is paralleled by acinar cell loss. Flow rate, amylase secretion and acinar cell numbers do not change in the third phase (60–120 days). The fourth phase (120–240 days) is determined by a further deterioration of gland function but an increase in acinar cell number, albeit with poor tissue morphology. All drug pretreatments used could reduce radiation effects in phase I and II. The protective effects were lost during phase IV, with the exception of methacholine plus phenylephrine pretreatment. The latter combination of drugs ameliorated radiation-damage throughout the entire follow-up time. The data show that combined pre-irradiation stimulation of muscarinic acetylcholine receptors with methacholine plus α-adrenoceptors with phenylephrine can reduce both early and late damage, possibly involving the PLC/PIP2 second messenger pathways. This opens perspectives for the development of clinical applicable methods for long-term sparing of parotid glands subjected to radiotherapy of head and neck cancer patients. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    Suppression of Radiation-Induced Salivary Gland Dysfunction by IGF-1

    Get PDF
    Radiation is a primary or secondary therapeutic modality for treatment of head and neck cancer. A common side effect of irradiation to the neck and neck region is xerostomia caused by salivary gland dysfunction. Approximately 40,000 new cases of xerostomia result from radiation treatment in the United States each year. The ensuing salivary gland hypofunction results in significant morbidity and diminishes the effectiveness of anti-cancer therapies as well as the quality of life for these patients. Previous studies in a rat model have shown no correlation between induction of apoptosis in the salivary gland and either the immediate or chronic decrease in salivary function following gamma-radiation treatment.A significant level of apoptosis can be detected in the salivary glands of FVB mice following gamma-radiation treatment of the head and neck and this apoptosis is suppressed in transgenic mice expressing an activated mutant of Akt (myr-Akt1). Importantly, this suppression of apoptosis in myr-Akt1 mice preserves salivary function, as measured by saliva output, three and thirty days after gamma-radiation treatment. In order to translate these studies into a preclinal model we found that intravenous injection of IGF1 stimulated activation of endogenous Akt in the salivary glands in vivo. A single injection of IGF1 prior to exposure to gamma-radiation diminishes salivary acinar cell apoptosis and completely preserves salivary gland function three and thirty days following irradiation.These studies suggest that apoptosis of salivary acinar cells underlies salivary gland hypofunction occurring secondary to radiation of the head and neck region. Targeted delivery of IGF1 to the salivary gland of patients receiving head and neck irradiation may be useful in reducing or eliminating xerostomia and restoring quality of life to these patients

    Long-Term Alterations of Cytokines and Growth Factors Expression in Irradiated Tissues and Relation with Histological Severity Scoring

    Get PDF
    PURPOSE: Beside its efficacy in cancer treatment, radiotherapy induces degeneration of healthy tissues within the irradiated area. The aim of this study was to analyze the variations of proinflammatory (IL-1α, IL-2, IL-6, TNF-α, IFN-γ), profibrotic (TGF-β1), proangiogneic (VEGF) and stem cell mobilizing (GM-CSF) cytokines and growth factors in an animal model of radiation-induced tissue degeneration. MATERIALS AND METHODS: 24 rats were irradiated unilaterally on the hindlimb at a monodose of 30 Gy. Six weeks (n=8), 6 months (n=8) and 1 year (n=8) after irradiation the mediators expression in skin and muscle were analyzed using Western blot and the Bio-Plex® protein array (BPA) technology. Additional histological severity for fibrosis, inflammation, vascularity and cellularity alterations scoring was defined from histology and immnunohistochemistry analyses. RESULTS: A significant increase of histological severity scoring was found in irradiated tissue. Skin tissues were more radio-sensitive than muscle. A high level of TGF-β1 expression was found throughout the study and a significant relation was evidenced between TGF-β1 expression and fibrosis scoring. Irradiated tissue showed a chronic inflammation (IL-2 and TNF-α significantly increased). Moreover a persistent expression of GM-CSF and VEGF was found in all irradiated tissues. The vascular score was related to TGF-β1 expression and the cellular alterations score was significantly related with the level of IL-2, VEGF and GM-CSF. CONCLUSION: The results achieved in the present study underline the complexity and multiplicity of radio-induced alterations of cytokine network. It offers many perspectives of development, for the comprehension of the mechanisms of late injuries or for the histological and molecular evaluation of the mode of action and the efficacy of rehabilitation techniques

    Design of a randomized controlled double-blind crossover clinical trial to assess the effects of saliva substitutes on bovine enamel and dentin in situ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hyposalivation is caused by various syndromes, diabetes, drugs, inflammation, infection, or radiotherapy of the salivary glands. Patients with hyposalivation often show an increased caries incidence. Moreover, hyposalivation is frequently accompanied by oral discomfort and impaired oral functions, and saliva substitutes are widely used to alleviate oral symptoms. However, preference of saliva substitutes due to taste, handling, and relief of oral symptoms has been discussed controversially. Some of the marketed products have shown demineralizing effects on dental hard tissues <it>in vitro</it>. This demineralizing potential is attributed to the undersaturation with respect to calcium phosphates. Therefore, it is important to modify the mineralizing potential of saliva substitutes to prevent carious lesions. Thus, the aim of the present study was to evaluate the effects of a possible remineralizing saliva substitute (SN; modified Saliva natura) compared to a demineralizing one (G; Glandosane) on mineral parameters of sound bovine dentin and enamel as well as on artificially demineralized enamel specimens <it>in situ</it>. Moreover, oral well-being after use of each saliva substitute was recorded.</p> <p>Methods/Design</p> <p>Using a randomized, double-blind, crossover, phase II/III <it>in situ </it>trial, volunteers with hyposalivation utilize removable dentures containing bovine specimens during the experimental period. The volunteers are divided into two groups, and are required to apply both saliva substitutes for seven weeks each. After both test periods, differences in mineral loss and lesion depth between values before and after exposure are evaluated based on microradiographs. The oral well-being of the volunteers before and after therapy is determined using questionnaires. With respect to the microradiographic analysis, equal mineral losses and lesion depths of enamel and dentin specimens during treatment with SN and G, and no differences in patients' experienced oral comfort after SN compared to G usage are expected (H<sub>0</sub>).</p> <p>Discussion</p> <p>Up to now, 14 patients have been included in the study, and no reasons for early termination of the trial have been identified. The design seems suitable for determining the effects of saliva substitutes on dental hard tissues <it>in situ</it>, and should provide detailed information on the oral well-being after use of different saliva substitutes in patients with hyposalivation.</p> <p>Trial registration</p> <p><b>ClinicalTrials.gov ID. </b><a href="http://www.clinicaltrials.gov/ct2/show/NCT01165970">NCT01165970</a></p
    • …
    corecore