186 research outputs found

    Constraints on the environment and energetics of the Broad-Line Ic SN2014ad from deep radio and X-ray observations

    Full text link
    Broad-line type Ic Supernovae (BL-Ic SNe) are characterized by high ejecta velocity (104\gtrsim 10^4 km s1^{-1}) and are sometimes associated with the relativistic jets typical of long duration (2\gtrsim 2 s) Gamma-Ray Bursts (L-GRBs). The reason why a small fraction of BL-Ic SNe harbor relativistic jets is not known. Here we present deep X-ray and radio observations of the BL-Ic SN2014ad extending from 1313 to 930930 days post explosion. SN2014ad was not detected at either frequency and has no observational evidence of a GRB counterpart. The proximity of SN2014ad (d26d\sim 26 Mpc) enables very deep constraints on the progenitor mass-loss rate M˙\dot{M} and on the total energy of the fast ejecta EE. We consider two synchrotron emission scenarios for a wind-like circumstellar medium (CSM): (i) uncollimated non-relativistic ejecta, and (ii) off-axis relativistic jet. Within the first scenario our observations are consistent with GRB-less BL-Ic SNe characterized by a modest energy budget of their fast ejecta (E1045E \lesssim 10^{45} erg), like SNe 2002ap and 2010ay. For jetted explosions, we cannot rule out a GRB with E1051E \lesssim 10^{51} erg (beam-corrected) with a narrow opening angle (θj5\theta_j \sim 5^{\circ}) observed moderately off-axis (θobs30\theta_{\rm obs} \gtrsim 30^{\circ}) and expanding in a very low CSM density (M˙\dot{M} 106\lesssim 10^{-6} M_{\odot} yr1^{-1}). Our study shows that off-axis low-energy jets expanding in a low-density medium cannot be ruled out even in the most nearby BL-Ic SNe with extensive deep observations, and might be a common feature of BL-Ic SNe.Comment: 9 pages, 5 figures, accepted in Ap

    One thousand days of SN 2015bn: HST imaging shows a light curve flattening consistent with magnetar predictions

    Full text link
    We present the first observations of a Type I superluminous supernova (SLSN) at 1000\gtrsim 1000 days after maximum light. We observed SN 2015bn using the Hubble Space Telescope Advanced Camera for Surveys in the F475W, F625W and F775W filters at 721 days and 1068 days. SN 2015bn is clearly detected and resolved from its compact host, allowing reliable photometry. A galaxy template constructed from these data further enables us to isolate the SLSN flux in deep ground-based imaging. We measure a light curve decline rate at >700>700 days of 0.19±0.030.19 \pm 0.03 mag (100 d)1^{-1}, much shallower than the earlier evolution, and slower than previous SLSNe (at any phase) or the decay rate of 56^{56}Co. Neither additional radioactive isotopes nor a light echo can consistently account for the slow decline. A spectrum at 1083 days shows the same [O I] and [Ca II] lines as seen at 300400\sim300-400 days, with no new features to indicate strong circumstellar interaction. Radio limits with the Very Large Array rule out an extended wind for mass-loss rates 102.7M˙/v10101.110^{-2.7} \lesssim \dot{M}/v_{10} \lesssim 10^{-1.1} M_\odot yr1^{-1} (where v10v_{10} is the wind velocity in units of 10 km s1^{-1}). The optical light curve is consistent with Lt4L \propto t^{-4}, which we show is expected for magnetar spin-down with inefficient trapping; furthermore, the evolution matches predictions from earlier magnetar model fits. The opacity to magnetar radiation is constrained at 0.01\sim 0.01 cm2^2 g1^{-1}, consistent with photon-matter pair-production over a broad \simGeV-TeV range. This suggests the magnetar spectral energy distribution, and hence the 'missing energy' leaking from the ejecta, may peak in this range.Comment: Accepted for publication in ApJL, updated to match accepted versio

    Rapid radio flaring during an anomalous outburst of SS Cyg

    Get PDF
    The connection between accretion and jet production in accreting white dwarf binary systems, especially dwarf novae, is not well understood. Radio wavelengths provide key insights into the mechanisms responsible for accelerating electrons, including jets and outflows. Here, we present densely sampled radio coverage, obtained with the Arcminute MicroKelvin Imager Large Array, of the dwarf nova SS Cyg during its 2016 February anomalous outburst. The outburst displayed a slower rise (3 dmag-1) in the optical than typical ones and lasted for more than three weeks. Rapid radio flaring on time-scales <1 h was seen throughout the outburst. The most intriguing behaviour in the radio was towards the end of the outburst where a fast, luminous ('giant'), flare peaking at ~20 mJy and lasting for 15 min was observed. This is the first time that such a flare has been observed in SS Cyg and insufficient coverage could explain its non-detection in previous outbursts. These data, together with past radio observations, are consistent with synchrotron emission from plasma ejection events as being the origin of the radio flares. However, the production of the giant flare during the declining accretion rate phase remains unexplained within the standard accretion-jet framework and appears to be markedly different to similar patterns of behaviour in X-ray binaries

    Improved constraints on H0 from a combined analysis of gravitational-wave and electromagnetic emission from GW170817

    Full text link
    The luminosity distance measurement of GW170817 derived from GW analysis in Abbott et al. 2017 (here, A17:H0) is highly correlated with the measured inclination of the NS-NS system. To improve the precision of the distance measurement, we attempt to constrain the inclination by modeling the broad-band X-ray-to-radio emission from GW170817, which is dominated by the interaction of the jet with the environment. We update our previous analysis and we consider the radio and X-ray data obtained at t<40t<40 days since merger. We find that the afterglow emission from GW170817 is consistent with an off-axis relativistic jet with energy 1048erg<Ek3×1050erg10^{48}\,\rm{erg}<E_{k}\le 3\times 10^{50} \,\rm{erg} propagating into an environment with density n102104cm3n\sim10^{-2}-10^{-4} \,\rm{cm^{-3}}, with preference for wider jets (opening angle θj=15\theta_j=15 deg). For these jets, our modeling indicates an off-axis angle θobs2550\theta_{\rm obs}\sim25-50 deg. We combine our constraints on θobs\theta_{\rm obs} with the joint distance-inclination constraint from LIGO. Using the same 170\sim 170 km/sec peculiar velocity uncertainty assumed in A17:H0 but with an inclination constraint from the afterglow data, we get a value of H0=H_0=74.0±11.57.574.0 \pm \frac{11.5}{7.5} \mbox{km/s/Mpc}, which is higher than the value of H0=H_0=70.0±12.08.070.0 \pm \frac{12.0}{8.0} \mbox{km/s/Mpc} found in A17:H0. Further, using a more realistic peculiar velocity uncertainty of 250 km/sec derived from previous work, we find H0=H_0=75.5±11.69.675.5 \pm \frac{11.6}{9.6} km/s/Mpc for H0 from this system. We note that this is in modestly better agreement with the local distance ladder than the Planck CMB, though a significant such discrimination will require 50\sim 50 such events. Future measurements at t>100t>100 days of the X-ray and radio emission will lead to tighter constraints.Comment: Submitted to ApJL. Comments Welcome. Revised uncertainties in v

    SN 2016coi (ASASSN-16fp): an energetic H-stripped core-collapse supernova from a massive stellar progenitor with large mass loss

    Get PDF
    We present comprehensive observations and analysis of the energetic H-stripped SN 2016coi (a.k.a. ASASSN-16fp), spanning the γ\gamma-ray through optical and radio wavelengths, acquired within the first hours to \sim420 days post explosion. Our campaign confirms the identification of He in the SN ejecta, which we interpret to be caused by a larger mixing of Ni into the outer ejecta layers. From the modeling of the broad bolometric light curve we derive a large ejecta mass to kinetic energy ratio (Mej47MM_{\rm{ej}}\sim 4-7\,\rm{M_{\odot}}, Ek78×1051ergE_{\rm{k}}\sim 7-8\times 10^{51}\,\rm{erg}). The small [\ion{Ca}{ii}] \lam\lam7291,7324 to [\ion{O}{i}] \lam\lam6300,6364 ratio (\sim0.2) observed in our late-time optical spectra is suggestive of a large progenitor core mass at the time of collapse. We find that SN 2016coi is a luminous source of X-rays (LX>1039ergs1L_{X}>10^{39}\,\rm{erg\,s^{-1}} in the first 100\sim100 days post explosion) and radio emission (L8.5GHz7×1027ergs1Hz1L_{8.5\,GHz}\sim7\times 10^{27}\,\rm{erg\,s^{-1}Hz^{-1}} at peak). These values are in line with those of relativistic SNe (2009bb, 2012ap). However, for SN 2016coi we infer substantial pre-explosion progenitor mass-loss with rate M˙(12)×104Myr1\dot M \sim (1-2)\times 10^{-4}\,\rm{M_{\odot}yr^{-1}} and a sub-relativistic shock velocity vsh0.15cv_{sh}\sim0.15c, in stark contrast with relativistic SNe and similar to normal SNe. Finally, we find no evidence for a SN-associated shock breakout γ\gamma-ray pulse with energy Eγ>2×1046ergE_{\gamma}>2\times 10^{46}\,\rm{erg}. While we cannot exclude the presence of a companion in a binary system, taken together, our findings are consistent with a massive single star progenitor that experienced large mass loss in the years leading up to core-collapse, but was unable to achieve complete stripping of its outer layers before explosion.Comment: Submitted to ApJ. Main text: 21 pages; Appendix: 15 pages; 12 figure

    AT2023fhn (the Finch):a luminous fast blue optical transient at a large offset from its host galaxy

    Get PDF
    Luminous fast blue optical transients (LFBOTs) – the prototypical example being AT 2018cow – are a rare class of events whose origins are poorly understood. They are characterized by rapid evolution, featureless blue spectra at early times, and luminous X-ray and radio emission. LFBOTs thus far have been found exclusively at small projected offsets from star-forming host galaxies. We present Hubble Space Telescope, Gemini, Chandra, and Very Large Array observations of a new LFBOT, AT 2023fhn. The Hubble Space Telescope data reveal a large offset (&gt;3.5 half-light radii) from the two closest galaxies, both at redshift z ∼ 0.24. The location of AT 2023fhn is in stark contrast with previous events, and demonstrates that LFBOTs can occur in a range of galactic environments

    AT2023fhn (the Finch): a Luminous Fast Blue Optical Transient at a large offset from its host galaxy

    Full text link
    Luminous Fast Blue Optical Transients (LFBOTs) - the prototypical example being AT 2018cow - are a rare class of events whose origins are poorly understood. They are characterised by rapid evolution, featureless blue spectra at early times, and luminous X-ray and radio emission. LFBOTs thus far have been found exclusively at small projected offsets from star-forming host galaxies. We present Hubble Space Telescope, Gemini, Chandra and Very Large Array observations of a new LFBOT, AT2023fhn. The Hubble Space Telescope data reveal a large offset (greater than 3.5 half-light radii) from the two closest galaxies, both at a redshift of 0.24. The isolated environment of AT 2023fhn is in stark contrast with previous events, is challenging to explain with most LFBOT progenitor models, and calls into question the homogeneity of LFBOTs as a class.Comment: Submitted to MNRASL. 7 pages, 4 figures, 2 table
    corecore