34 research outputs found
Divalent Metal Binding Properties of the Methionyl Aminopeptidase from \u3cem\u3eEscherichia coli\u3c/em\u3e
The metal-binding properties of the methionyl aminopeptidase from Escherichia coli (MetAP) were investigated. Measurements of catalytic activity as a function of added Co(II) and Fe(II) revealed that maximal enzymatic activity is observed after the addition of only 1 equiv of divalent metal ion. Based on these studies, metal binding constants for the first metal binding event were found to be 0.3 ± 0.2 μM and 0.2 ± 0.2 μM for Co(II)- and Fe(II)-substituted MetAP, respectively. Binding of excess metal ions (\u3e50 equiv) resulted in the loss of ∼50% of the catalytic activity. Electronic absorption spectral titration of a 1 mM sample of MetAP with Co(II) provided a binding constant of 2.5 ± 0.5 mM for the second metal binding site. Furthermore, the electronic absorption spectra of Co(II)-loaded MetAP indicated that both metal ions reside in a pentacoordinate geometry. Consistent with the absorption data, electron paramagnetic resonance (EPR) spectra of [CoCo(MetAP)] also indicated that the Co(II) geometries are not highly constrained, suggesting that each Co(II) ion in MetAP resides in a pentacoordinate geometry. EPR studies on [CoCo(MetAP)] also revealed that at pH 7.5 there is no significant spin-coupling between the two Co(II) ions, though a small proportion (∼5%) of the sample exhibited detectable spin−spin interactions at pH values \u3e 9.6. EPR studies on [Fe(III)_(MetAP)] and [Fe(III)Fe(III)(MetAP)] also suggested no spin-coupling between the two metal ions. 1H nuclear magnetic resonance (NMR) spectra of [Co(II)_(MetAP)] in both H2O and D2O buffer indicated that the first metal binding site contains the only active-site histidine residue, His171. Mechanistic implications of the observed binding properties of divalent metal ions to the MetAP from E. coli are discussed
Molecular Discrimination of Type-I over Type-II Methionyl Aminopeptidases
Two residues that are conserved in type-I methionyl aminopeptidases (MetAPs) but are absent in all type-II MetAPs are the cysteine residues (Escherichia coli MetAP-I:   C59 and C70) that reside at the back of the substrate recognition pocket. These Cys residues are 4.4 Å apart and do not form a disulfide bond. Since bacteria and fungi contain only type-I MetAPs while all human cells contain both type-I and type-II MetAPs, type-I MetAPs represent a novel antibiotic/antifungal target if type-I MetAPs can be specifically targeted over type-II. Based on reaction of the thiol-specific binding reagent 5,5‘-dithio-bis(2-nitrobenzoic acid) (DTNB) with the type-I MetAP from E. coli and the type-II MetAP from Pyrococcus furiosus, the type-I MetAP can be selectively inhibited. Verification that DTNB covalently binds to C59 in EcMetAP-I was obtained by mass spectrometry (MS) from reaction of DTNB with the C59A and C70A mutant EcMetAP-I enzymes. In addition, two inhibitors of EcMetAP-I, 5-iodopentaphosphonic acid (1) and 6-phosphonohexanoic acid (2), were designed and synthesized. The first was designed as a selective-C59 binding reagent while the second was designed as a simple competitive inhibitor of EcMetAP. Indeed, inhibitor 1 forms a covalent interaction with C59 based on activity assays and MS measurements, while 2 does not. These data indicate that type-I MetAPs can be selectively targeted over type-II MetAPs, suggesting that type-I MetAPs represent a new enzymatic target for antibacterial or antifungal agents
Both Nucleophile and Substrate Bind to the Catalytic Fe(II)-Center in the Type-II Methionyl Aminopeptidase from \u3cem\u3ePyrococcus furiosus\u3c/em\u3e
Metalloproteases utilize their active site divalent metal ions to generate a nucleophilic water/hydroxide. For methionine aminopeptidases (MetAPs), the exact location of this nucleophile, as well as of the substrate, with respect to the active site metal ion is unknown. In order to address this issue, we have examined the catalytically competent Fe(II)-loaded form of PfMetAP-II ([Fe(PfMetAP-II)]) in the absence and presence of both nitric oxide (NO) and the substrate-analogue inhibitor butaneboronic acid (BuBA) by kinetic and spectroscopic (EPR, UV−vis) methods. NO binds to [Fe(PfMetAP−II)] with a Kd of 200 μM forming an {FeNO}7 complex. UV−vis spectra of the resulting [Fe(PfMetAP−II)]−NO complex indicate that the Fe(II) ion is six coordinate. These data suggest that NO binding occurs without displacing the bound aquo/hydroxo moiety in [Fe(PfMetAP−II)]. On the basis of EPR spectra, the resulting Fe−NO complex is best described as NO- (S = 1) antiferromagnetically coupled to a high-spin Fe(III) ion (S = 5/2). The addition of BuBA to [Fe(PfMetAP-II)]−NO displaces the coordinated water molecule forming a six-coordinate adduct. EPR data also indicate that an interaction between the bound NO- and BuBA occurs forming a complex that mimics an intermediate step between the Michaelis complex and the tetrahedral transition-state
Kinetic and Spectroscopic Characterization of the H178A Methionyl Aminopeptidase from \u3cem\u3eEscherichia coli\u3c/em\u3e
To gain insight into the role of the strictly conserved histidine residue, H178, in the reaction mechanism of the methionyl aminopeptidase from Escherichia coli (EcMetAP-I), the H178A mutant enzyme was prepared. Metal-reconstituted H178A binds only one equivalent of Co(II) or Fe(II) tightly with affinities that are identical to the WT enzyme based on kinetic and isothermal titration calorimetry (ITC) data. Electronic absorption spectra of Co(II)-loaded H178A EcMetAP-I indicate that the active site divalent metal ion is pentacoordinate, identical to the WT enzyme. These data indicate that the metal binding site has not been affected by altering H178. The effect of altering H178 on activity is, in general, due to a decrease in kcat. The kcat value for Co(II)-loaded H178A decreased 70-fold toward MGMM and 290-fold toward MP-p-NA compared to the WT enzyme, while kcat decreased 50-fold toward MGMM for the Fe(II)-loaded H178A enzyme and 140-fold toward MP-p-NA. The Km values for MGMM remained unaffected, while those for MP-p-NA increased approximately 2-fold for Co(II)- and Fe(II)-loaded H178A. The kcat/Km values for both Co(II)- and Fe(II)-loaded H178A toward both substrates ranged from ∼50- to 580-fold reduction. The pH dependence of log Km, log kcat, and log(kcat/Km) of both WT and H178A EcMetAP-I were also obtained and are identical, within error, for H178A and WT EcMetAP-I. Therefore, H178A is catalytically important but is not required for catalysis. Assignment of one of the observed pKa values at 8.1 for WT EcMetAP-I was obtained from plots of molar absorptivity at λmax(640) vs pH for both WT and H178A EcMetAP-I. Apparent pKa values of 8.1 and 7.6 were obtained for WT and H178A EcMetAP-I, respectively, and were assigned to the deprotonation of a metal-bound water molecule. The data reported herein provide support for the key elements of the previously proposed mechanism and suggest that a similar mechanism can apply to the enzyme with a single metal in the active site
Overexpression and Divalent Metal Binding Properties of the Methionyl Aminopeptidase from \u3cem\u3ePyrococcus furiosus\u3c/em\u3e
The gene encoding for the methionyl aminopeptidase from the hyperthermophilic archaeon Pyrococcus furiosus (PfMetAP-II; EC 3.4.11.18) has been inserted into a pET 27b(+) vector and overexpressed in Escherichia coli. The new expression system resulted in a 5-fold increase in purified enzyme obtained from a 5 L fermentor growth. The as-purified PfMetAP-II enzyme, to which no exogenous metal ions or EDTA was added, was found to have 1.2 equiv of zinc and 0.1 equiv of iron present by ICP-AES analysis. This enzyme had a specific activity of 5 units/mg, a 60-fold decrease from the fully loaded Fe(II) enzymes. When an additional 2 equiv of Zn(II) was added to the as-purified PfMetAP-II, no activity could be detected. The combination of these data with previously reported whole cell studies on EcMetAP-I further supports the suggestion that the in vivo metal ion for all MetAP\u27s is Fe(II). Both Co(II)- and Fe(II)-loaded PfMetAP-II showed similar substrate specificities to EcMetAP-I. Substrate binding was largely affected by the amino acid in the P1 position and the length of the polypeptide. The substrates MSSHRWDW and MP-p-NA showed the smallest Km values while the substrates MGMM and MP-p-NA provided the highest turnover. The catalytic efficiency (kcat/Km) of PfMetAP-II for MP-p-NA at 30 °C was 799 500 and 340 930 M-1 s-1 for Co(II)- and Fe(II)-loaded PfMetAP-II, respectively. Maximum catalytic activity was obtained with 1 equiv of Co(II) or Fe(II), and the dissociation constants (Kd) for the first metal binding site were found to be 50 ± 15 and 20 ± 15 nM for Co(II)- and Fe(II)-substituted PfMetAP-II, respectively. Electronic absorption spectral titration of a 1 mM sample of apo-PfMetAP-II with Co(II) provided a dissociation constant of 0.35 ± 0.02 mM for the second metal binding site, a 17500-fold increase compared to the first metal binding site. The electronic absorption data also indicated that both Co(II) ions reside in a pentacoordinate geometry. PfMetAP-II shows unique thermostability and the optimal temperature for substrate turnover was found to be ∼85 °C at pH 7.5 in 25 mM Hepes and 150 mM KCl buffer. The hydrolysis of MGMM was measured in triplicate between 25 and 85 °C at eight substrate concentrations ranging from 2 to 20 mM. Both specific activity and Km values increased with increasing temperature. An Arrhenius plot was constructed from the kcat values and was found to be linear over the temperature range 25−85 °C, indicating that the rate-limiting step in PfMetAP-II peptide hydrolysis does not change as a function of temperature. Co(II)- and Fe(II)-loaded PfMetAP-II have similar activation energies (13.3 and 19.4 kJ/mol, respectively). The thermodynamic parameters calculated at 25 °C are as follows:  ΔG⧧ = 46.23 kJ/mol, ΔH⧧ = 10.79 kJ/mol, and ΔS⧧ = −119.72 J·mol-1·K-1 for Co(II)-loaded PfMetAP; ΔG⧧ = 46.44 kJ/mol, ΔH⧧ = 16.94 kJ/mol, and ΔS⧧ = −99.67 J·mol-1·K-1 for Fe(II)-loaded PfMetAP. Interestingly, at higher temperatures (\u3e50 °C), Fe(II)-loaded PfMetAP-II is more active (1.4-fold at 85 °C) than Co(II)-loaded PfMetAP-II
Kinetic and Structural Characterization of Manganese(II)-Loaded Methionyl Aminopeptidases
Manganese(II) activation of the methionyl aminopeptidases from Escherichia coli (EcMetAP-I) and the hyperthermophilic archaeon Pyrococcus furiosus (PfMetAP-II) was investigated. Maximum catalytic activity for both enzymes was obtained with 1 equiv of Mn(II), and the dissociation constants (Kd) for the first metal binding site were found to be 6 ± 0.5 and 1 ± 0.5 μM for EcMetAP-I and PfMetAP-II, respectively. These Kd values were verified by isothermal titration calorimetry (ITC) and found to be 3.0 ± 0.2 and 1.4 ± 0.2 μM for EcMetAP-I and PfMetAP-II, respectively. The hydrolysis of MGMM was measured in triplicate between 25 and 85 °C at eight substrate concentrations ranging from 2 to 20 mM for PfMetAP-II. Both specific activity and Km values increased with increasing temperature. An Arrhenius plot was constructed from the kcat values and was found to be linear over the temperature range 25−85 °C. The activation energy for the Mn(II)-loaded PfMetAP-II hydrolysis of MGMM was found to be 25.7 kJ/mol while the remaining thermodynamic parameters calculated at 25 °C are ΔG⧧ = 50.1 kJ/mol, ΔH⧧ = 23.2 kJ/mol, and ΔS⧧ = −90.2 J·mol-1·K-1
Conducting polymer nanoparticles for targeted cancer therapy
First and second generation photosensitizers used in photodynamic therapy (PDT) have shown promising results in clinical applications, aided by recent improvements in light absorption efficiency and quantum yield of singlet oxygen formation. However, these photosensitizers still have several drawbacks that prevent PDT from being an efficient therapy, including lack of selectivity to diseased tissue, observation of dark toxicity, and hydrophobicity of the sensitizer. Conducting polymers are promising candidates as next generation sensitizers for PDT due to their large extinction coefficients ( \u3e 10(7) L mol(-1) cm(-1)), ability to undergo intersystem crossing to the triplet state at high rates, and triplet energies that are close to that of oxygen. Targeting of conducting polymer poly[2-methoxy-5-(2-ethylhexyl-oxy)-p-phenylenevinylene] (MEH-PPV) nanoparticles to folate receptors (FR) was achieved by development of blended nanoparticles containing amphiphilic polymer polystyrene graft ethylene oxide functionalized with carboxylic acid (PS-PEG-COOH) with chemically active moieties that can be functionalized with folic acid. The resulting organic nanoparticles are buffer stable and exhibit excellent biocompatibility in the dark. The functionalized nanoparticles (FNPs) were studied in OVCAR3 (ovarian cancer cell line, FR+), MIA PaCa2 (pancreatic cell line, FR-), and A549 (lung cancer cell line, marginally FR+). Complete selectivity of the FNPs towards FR+ cell lines was found, and is attributed to the hydrophobicity and large negative zeta potential of the nanoparticles. Quantification of PDT results by MTS assays and flow cytometry show that PDT treatment was fully selective to the FR overexpressing cell line (OVCAR3). No cell mortality was observed for the other cell lines studied here within experimental error
EPR and X-ray Crystallographic Characterization of the Product-Bound Form of the Mn\u3csup\u3eII\u3c/sup\u3e-Loaded Methionyl Aminopeptidase from \u3cem\u3ePyrococcus furiosus\u3c/em\u3e
Methionine aminopeptidases (MetAPs) are ubiquitous metallohydrolases that remove the N-terminal methionine from nascent polypeptide chains. Although various crystal structures of MetAP in the presence of inhibitors have been solved, the structural aspects of the product-bound step has received little attention. Both perpendicular- and parallel-mode electron paramagnetic resonance (EPR) spectra were recorded for the MnII-loaded forms of the type-I (Escherichia coli) and type-II (Pyrococcus furiosus) MetAPs in the presence of the reaction product l-methionine (l-Met). In general, similar EPR features were observed for both [MnMn(EcMetAP-I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met. The observed perpendicular-mode EPR spectra consisted of a six-line hyperfine pattern at g = 2.03 (A = 8.8 mT) with less intense signals with eleven-line splitting at g = 2.4 and 1.7 (A = 4.4 mT). The former feature results from mononuclear, magnetically isolated MnII ions and this signal are 3-fold more intense in the [MnMn(PfMetAP-II)]−l-Met EPR spectrum than in the [MnMn(EcMetAP-I)]−l-Met spectrum. Inspection of the EPR spectra of both [MnMn(EcMetAP-I)]−l-Met and [MnMn(PfMetAP-II)]−l-Met at 40 K in the parallel mode reveals that the [Mn(EcMetAP-I)]−l-Met spectrum exhibits a well-resolved hyperfine split pattern at g = 7.6 with a hyperfine splitting constant of A = 4.4 mT. These data suggest the presence of a magnetically coupled dinuclear MnII center. On the other hand, a similar feature was not observed for the [MnMn(PfMetAP-II)]−l-Met complex. Therefore, the EPR data suggest that l-Met binds to [MnMn(EcMetAP-I)] differently than [MnMn(PfMetAP-II)]. To confirm these data, the X-ray crystal structure of [MnMn(PfMetAP-II)]−l-Met was solved to 2.3 Å resolution. Both Mn1 and Mn2 reside in a distorted trigonal bipyramidal geometry, but the bridging water molecule, observed in the [CoCo(PfMetAP-II)] structure, is absent. Therefore, l-Met binding displaces this water molecule, but the carboxylate oxygen atom of l-Met does not bridge between the two MnII ions. Instead, a single carboxylate oxygen atom of l-Met interacts with only Mn1, while the N-terminal amine nitrogen atom binds to M2. This l-Met binding mode is different from that observed for l-Met binding [CoCo(EcMetAP-I)]. Therefore, the catalytic mechanisms of type-I MetAPs may differ somewhat from type-II enzymes when a dinuclear metalloactive site is present
Ponatinib promotes a G1 cell-cycle arrest of merlin/NF2-deficient human schwann cells
Neurofibromatosis type 2 (NF2) is a genetic syndrome that predisposes individuals to multiple benign tumors of the central and peripheral nervous systems, including vestibular schwannomas. Currently, there are no FDA approved drug therapies for NF2. Loss of function of merlin encoded by the NF2 tumor suppressor gene leads to activation of multiple mitogenic signaling cascades, including platelet-derived growth factor receptor (PDGFR) and SRC in Schwann cells. The goal of this study was to determine whether ponatinib, an FDA-approved ABL/SRC inhibitor, reduced proliferation and/or survival of merlin-deficient human Schwann cells (HSC). Merlin-deficient HSC had higher levels of phosphorylated PDGFRα/β, and SRC than merlin-expressing HSC. A similar phosphorylation pattern was observed in phospho-protein arrays of human vestibular schwannoma samples compared to normal HSC. Ponatinib reduced merlin-deficient HSC viability in a dose-dependent manner by decreasing phosphorylation of PDGFRα/β, AKT, p70S6K, MEK1/2, ERK1/2 and STAT3. These changes were associated with decreased cyclin D1 and increased p27Kip1levels, leading to a G1 cell-cycle arrest as assessed by Western blotting and flow cytometry. Ponatinib did not modulate ABL, SRC, focal adhesion kinase (FAK), or paxillin phosphorylation levels. These results suggest that ponatinib is a potential therapeutic agent for NF2-associated schwannomas and warrants further in vivo investigation
Development And Characterization Of Conducting Polymer Nanoparticles For Photodynamic Therapy In Vitro
Conducting polymer nanoparticles (CPNPs), composed of the conducting polymer poly[2-methoxy-5-(2-ethylhexyl-oxy)-p-phenylenevinylene] (MEH-PPV) were studied for applications in biophotonics and therapeutics. The extent of cellular uptake, cytotoxicity, and effectiveness of these nanoparticles in photodynamic therapy (PDT) was investigated for four cell lines, namely TE-71, MDA-MB-231, A549 and OVCAR3. Confocal fluorescence imaging and flow cytometry show that CPNPs are taken up only in limited quantities by TE-71, while they are taken up extensively by the cancer cell lines. The uptake among the cancer cell lines was observed to vary with cell line, with CPNPs uptake increasing from MDA-MB-231 to A549 to OVCAR3. Fluorescence imaging experiments show that the CPNPs have high brightness and appear stable in the intracellular environment. No cytotoxicity of non-photoactivated CPNPs (in dark) was observed from MTT assay. After completion of PDT, the quantitative data on cell viability suggest that cell death scales across the cell lines with CPNP uptake, is light dose dependent, and is complete for OVCAR3. In addition, for OVCAR3 apoptotic cell death is observed after PDT. The reported work illustrates the potential of the intrinsically fluorescent and photoactivateable CPNPs for application in biophotonics and therapeutics