48 research outputs found
Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization
Plant Growth Promoting Bacteria (PGPB) and Arbuscular Mycorrhizal Fungi (AMF) can positively affect plant nutrition and growth. Recent studies have also shown that rhizospheric microorganisms can result in improved fruit features. Aim of this work was to evaluate, in an industrial farming, the effects of three selected biostimulants (consisting of a mix of Plant Growth Promoting Bacteria and Arbuscular Mycorrhizal Fungi), employed in conditions of reduced fertilization on yield, fruit quality and nutritional value.
Tomato plants were inoculated with AM fungi and Pseudomonas sp. 19Fv1T or P. fluorescens C7, transplanted and grown in open field under conditions of reduced fertilization. The impact of the microorganisms on the fruit yield and nutritional value was assessed by measuring the production, fruit size and concentration of soluble sugars, organic acids, carotenoids and ascorbate.
The size and biomass of tomato fruits were affected by the inocula. Sugar concentration was increased by the selected microorganisms. All the mixtures induced an enhancement of malic acid, while double colonization with AMF and PGPB increased \u3b2-carotene concentration in fruits if compared to controls.
The results of the present study show that inoculation with soil microorganisms can help to drastically reduce the use of chemical fertilization, maintaining and, in some cases, even improving the tomato fruit yield and quality. This can lead to economical, environmental and human health benefits in relation to the increased sustainability
Influence of arbuscular mycorrhizal fungi on growth and essential oil composition in <i>Ocimum basilicum</i>var. Genovese
Bioactive Compounds and Aroma Profile of Some Lamiaceae Edible Flowers
Edible flowers are consumed for their appearance, colours, nutritional and healthy properties, but the use is limited by the actual number of the species. Seven edible flowers of the Lamiaceae family (Ocimeae and Mentheae tribes) were investigated: Monarda didyma ‘Fireball’, Nepeta × faassenii ‘Six Hills Giant’, Ocimum basilicum ‘Blue Spice’, O. basilicum ‘Cinnamon’, Ocimum × citriodorum, Salvia discolor, and Salvia microphylla ‘Hot Lips’. Total soluble sugars, proteins, polyphenols, carotenoids, ascorbic acid and antioxidant activity were detected. The species of the Mentheae tribe contained higher sugar content than Ocimeae flowers, the opposite with regard to protein content. Ocimeae tribe flowers showed high polyphenols and carotenoids content. The Ocimeae tribe together with two specie of the Mentheae tribe showed an aroma profile dominated by sesquiterpene hydrocarbons (58.0% in S. discolor to 77.9% in Ocimum × citriodorum). Oxygenated monoterpenes prevailed in Nepeta and Monarda, also present in the essential oil of this latter species (84.5%). By contrast, Nepeta and S. discolor evidenced non-terpenes as the principal class (41.2% and 77.5%, respectively), while the oxygenated sesquiterpene was the main one in S. microphylla. The two varieties of Ocimum spp. showed oxygenated monoterpenes as the main class of volatiles.</jats:p
Pharmacological Studies, with Focus on Antidiabetic Response of Perilla frutescens (L.) Britt
Inoculation with arbuscular mycorrhizal fungi improves melon (<i>Cucumis melo</i>) fruit quality under field conditions and plant performance in both field and greenhouse
Bioactive Compounds and Aroma Profile of Some Lamiaceae Edible Flowers
Edible flowers are consumed for their appearance, colours, nutritional and healthy
properties, but the use is limited by the actual number of the species. Seven edible flowers of the
Lamiaceae family (Ocimeae and Mentheae tribes) were investigated: Monarda didyma ‘Fireball’,
Nepeta × faassenii ‘Six Hills Giant’, Ocimum basilicum ‘Blue Spice’, O. basilicum ‘Cinnamon’, Ocimum
× citriodorum, Salvia discolor, and Salvia microphylla ‘Hot Lips’. Total soluble sugars, proteins,
polyphenols, carotenoids, ascorbic acid and antioxidant activity were detected. The species of the
Mentheae tribe contained higher sugar content than Ocimeae flowers, the opposite with regard to
protein content. Ocimeae tribe flowers showed high polyphenols and carotenoids content. The
Ocimeae tribe together with two specie of the Mentheae tribe showed an aroma profile dominated
by sesquiterpene hydrocarbons (58.0% in S. discolor to 77.9% in Ocimum × citriodorum). Oxygenated
monoterpenes prevailed in Nepeta and Monarda, also present in the essential oil of this latter species
(84.5%). By contrast, Nepeta and S. discolor evidenced non-terpenes as the principal class (41.2% and
77.5%, respectively), while the oxygenated sesquiterpene was the main one in S. microphylla. The
two varieties of Ocimum spp. showed oxygenated monoterpenes as the main class of volatiles
Volatilomic Analysis of Four Edible Flowers from Agastache Genus
Volatilomes emitted from edible flowers of two species of Agastache (A. aurantiaca (A.Gray) Lint & Epling, and A. mexicana (Kunth) Lint & Epling) and from two hybrids (Agastache ‘Arcado Pink’ and Agastache ‘Blue Boa’) were investigated using a solid-phase microextraction technique as well as the extraction of its essential oils. Oxygenated monoterpenes were almost always the predominant class (>85%) of volatile organic compounds (VOCs) in each sample of A. aurantiaca, A. ‘Blue Boa’ and A. mexicana, with the exception of A. ‘Arcado Pink’ (38.6%). Pulegone was the main compound in A. aurantiaca (76.7%) and A. ‘Blue Boa’ (82.4%), while geranyl acetate (37.5%) followed by geraniol (16%) and geranial (17%) were the principal ones in A. mexicana. The essential oil composition showed the same behavior as the VOCs both for the main class as well as the major constituent (pulegone) with the same exception for A. mexicana. Total soluble sugars, secondary metabolites (polyphenols, flavonoids and anthocyanins) and antioxidant activity were also investigated to emphasize the nutraceutical properties of these edible flowers.</jats:p
Volatilomic Analysis of Four Edible Flowers from Agastache Genus
Volatilomes emitted from edible flowers of two species of Agastache (A. aurantiaca (A.Gray) Lint & Epling, and A. mexicana (Kunth) Lint & Epling) and from two hybrids (Agastache ‘Arcado Pink’ and Agastache ‘Blue Boa’) were investigated using a solid-phase microextraction technique as well as the extraction of its essential oils. Oxygenated monoterpenes were almost always the predominant class (>85%) of volatile organic compounds (VOCs) in each sample of A. aurantiaca, A. ‘Blue Boa’ and A. mexicana, with the exception of A. ‘Arcado Pink’ (38.6%). Pulegone was the main compound in A. aurantiaca (76.7%) and A. ‘Blue Boa’ (82.4%), while geranyl acetate (37.5%) followed by geraniol (16%) and geranial (17%) were the principal ones in A. mexicana. The essential oil composition showed the same behavior as the VOCs both for the main class as well as the major constituent (pulegone) with the same exception for A. mexicana. Total soluble sugars, secondary metabolites (polyphenols, flavonoids and anthocyanins) and antioxidant activity were also investigated to emphasize the nutraceutical properties of these edible flowers
Phytochemical Constituents and Antidiabetic Properties Aspects of Gongronema latifolium Benth
Trace Elements in Edible Flowers from Italy: Further Insights into Health Benefits and Risks to Consumers
The use of edible flowers in cooking dates back to ancient times, but recently it is gaining success among the consumers, increasingly attentive to healthy and sustainable foods of high quality, without neglecting taste, flavour, and visual appeal. The present study aims to deepen the knowledge regarding the mineral composition of edible flowers, an aspect not widely investigated in scientific literature. The concentrations of Cd, Co, Cu, Fe, Mn, Ni, Pb, Sr, V, and Zn have been determined by Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES) in flowers belonging to a wide variety of species. The study highlights that some floral species are characterized by significantly higher concentrations of certain trace elements, e.g., the flowers of Acmella oleracea for Mn, those of basil (Ocimum basilicum) and of pumpkins (Cucurbita moschata and C. pepo) for Cu and Sr, and those of orange daylily (Hemerocallis fulva) for Ni. Potentially toxic elements are present at low concentrations, often below the limit of the detection for Cd, Co, Ni, V. In all samples, Cd and Pb are well below the maximum permitted levels in foodstuffs. It can be concluded that the edible flowers analyzed can be considered a good source of essential elements and do not present risks for the consumer health as for the mineral composition
