55 research outputs found

    Duality Invariance of Cosmological Perturbation Spectra

    Get PDF
    I show that cosmological perturbation spectra produced from quantum fluctuations in massless or self-interacting scalar fields during an inflationary era remain invariant under a two parameter family of transformations of the homogeneous background fields. This relates slow-roll inflation models to solutions which may be far from the usual slow-roll limit. For example, a scale-invariant spectrum of perturbations in a minimally coupled, massless field can be produced by an exponential expansion with a∝eHta\propto e^{Ht}, or by a collapsing universe with a∝(−t)2/3a\propto (-t)^{2/3}.Comment: 5 pages, Latex with Revtex. Hamiltonian formulation added and discussion expanded. Version to appear in Phys Rev

    Observational constraints on an inflation model with a running mass

    Get PDF
    We explore a model of inflation where the inflaton mass-squared is generated at a high scale by gravity-mediated soft supersymmetry breaking, and runs at lower scales to the small value required for slow-roll inflation. The running is supposed to come from the coupling of the inflaton to a non-Abelian gauge field. In contrast with earlier work, we do not constrain the magnitude of the supersymmetry breaking scale, and we find that the model might work even if squark and slepton masses come from gauge-mediated supersymmetry breaking. With the inflaton and gaugino masses in the expected range, and α=g2/4π\alpha = g^2/4\pi in the range 10−210^{-2} to 10−310^{-3} (all at the high scale) the model can give the observed cosmic microwave anisotropy, and a spectral index in the observed range. The latter has significant variation with scale, which can confirm or rule out the model in the forseeable future.Comment: Latex, 19 pages, 14 figures, uses epsf.st

    Natural Inflation From Fermion Loops

    Full text link
    ``Natural'' inflationary theories are a class of models in which inflation is driven by a pseudo-Nambu-Goldstone boson. In this paper we consider two models, one old and one new, in which the potential for inflation is generated by loop effects from a fermion sector which explicitly breaks a global U(1)U(1) symmetry. In both models, we retrieve the ``standard'' natural inflation potential, V(Ξ)=Λ4[1+cos⁥(Ξ/ÎŒ)]V\left(\theta\right) = \Lambda^4\left[1 + \cos\left(\theta / \mu\right)\right], as a limiting case of the exact one-loop potential, but we carry out a general analysis of the models including the limiting case. Constraints from the COBE DMR observation and from theoretical consistency are used to limit the parameters of the models, and successful inflation occurs without the necessity of fine-tuning the parameters.Comment: (Revised) 15 pages, LaTeX (revTeX), 8 figures in uuencoded PostScript format. Version accepted for publication in Phys. Rev. D 15. Corrected definition of power spectrum and added three reference

    Hybridized Affleck-Dine baryogenesis

    Full text link
    We propose a novel scenario for Affleck-Dine baryogenesis in the braneworld, considering the hybrid potential for the Affleck-Dine field. Destabilization of the flat direction is not due to the Hubble parameter, but is induced by a trigger field. The moduli for the brane distance plays the role of the trigger field. Q-balls are unstable in models with large extra dimensions.Comment: 10pages, plain latex2e, references added, to appear in PR

    D-terms and D-strings in open string models

    Full text link
    We study the Fayet-Iliopoulos (FI) D-terms on D-branes in type II Calabi-Yau backgrounds. We provide a simple worldsheet proof of the fact that, at tree level, these terms only couple to scalars in closed string hypermultiplets. At the one-loop level, the D-terms get corrections only if the gauge group has an anomalous spectrum, with the anomaly cancelled by a Green-Schwarz mechanism. We study the local type IIA model of D6-branes at SU(3) angles and show that, as in field theory, the one-loop correction suffers from a quadratic divergence in the open string channel. By studying the closed string channel, we show that this divergence is related to a closed string tadpole, and is cancelled when the tadpole is cancelled. Next, we study the cosmic strings that arise in the supersymmetric phases of these systems in light of recent work of Dvali et. al. In the type IIA intersecting D6-brane examples, we identify the D-term strings as D4-branes ending on the D6-branes. Finally, we use N=1 dualities to relate these results to previous work on the FI D-term of heterotic strings.Comment: 29 pages, 5 figures; v2: improved referencin

    Monte Carlo reconstruction of the inflationary potential

    Get PDF
    We present Monte Carlo reconstruction, a new method for ``inverting'' observational data to constrain the form of the scalar field potential responsible for inflation. This stochastic technique is based on the flow equation formalism and has distinct advantages over reconstruction methods based on a Taylor expansion of the potential. The primary ansatz required for Monte Carlo reconstruction is simply that inflation is driven by a single scalar field. We also require a very mild slow roll constraint, which can be made arbitrarily weak since Monte Carlo reconstruction is implemented at arbitrary order in the slow roll expansion. While our method cannot evade fundamental limits on the accuracy of reconstruction, it can be simply and consistently applied to poor data sets, and it takes advantage of the attractor properties of single-field inflation models to constrain the potential outside the small region directly probed by observations. We show examples of Monte Carlo reconstruction for data sets similar to that expected from the Planck satellite, and for a hypothetical measurement with a factor of five better parameter discrimination than Planck.Comment: 10 pages, 5 figures (RevTeX 4) Version submitted to PRD: references added, minor clarification

    Inflation from Susy quantum cosmology

    Full text link
    We propose a realization of inverted hybrid inflation scenario in the context of n=2 supersymmetric quantum cosmology. The spectrum of density fluctuations is calculated in the de Sitter regimen as a function of the gravitino and the Planck mass, and explicit forms for the wave function of the universe are found in the WKB regimen for a FRW closed and flat universes.Comment: 9 pages, one figure, to appear in Phys. Rev.

    Particle physics models of inflation

    Get PDF
    Inflation models are compared with observation on the assumption that the curvature perturbation is generated from the vacuum fluctuation of the inflaton field. The focus is on single-field models with canonical kinetic terms, classified as small- medium- and large-field according to the variation of the inflaton field while cosmological scales leave the horizon. Small-field models are constructed according to the usual paradigm for beyond Standard Model physicsComment: Based on a talk given at the 22nd IAP Colloquium, ``Inflation +25'', Paris, June 2006 Curve omitted from final Figur

    The Detectability of Departures from the Inflationary Consistency Equation

    Full text link
    We study the detectability, given CMB polarization maps, of departures from the inflationary consistency equation, r \equiv T/S \simeq -5 n_T, where T and S are the tensor and scalar contributions to the quadrupole variance, respectively. The consistency equation holds if inflation is driven by a slowly-rolling scalar field. Departures can be caused by: 1) higher-order terms in the expansion in slow-roll parameters, 2) quantum loop corrections or 3) multiple fields. Higher-order corrections in the first two slow-roll parameters are undetectably small. Loop corrections are detectable if they are nearly maximal and r \ga 0.1. Large departures (|\Delta n_T| \ga 0.1) can be seen if r \ga 0.001. High angular resolution can be important for detecting non-zero r+5n_T, even when not important for detecting non-zero r.Comment: 7 pages, 4 figures, submitted to PR

    Inflation at Low Scales: General Analysis and a Detailed Model

    Full text link
    Models of inflationary cosmology based on spontaneous symmetry breaking typically suffer from the shortcoming that the symmetry breaking scale is driven to nearly the Planck scale by observational constraints. In this paper we investigate inflationary potentials in a general context, and show that this difficulty is characteristic only of potentials V(ϕ)V(\phi) dominated near their maxima by terms of order ϕ2\phi^2. We find that potentials dominated by terms of order ϕm\phi^m with \hbox{m>2m > 2} can satisfy observational constraints at an arbitrary symmetry breaking scale. Of particular interest, the spectral index of density fluctuations is shown to depend only on the order of the lowest non-vanishing derivative of V(ϕ)V(\phi) near the maximum. This result is illustrated in the context of a specific model, with a broken SO(3){\rm SO(3)} symmetry, in which the potential is generated by gauge boson loops.Comment: Submitted to Phys. Rev. D. 32 Pages, REVTeX. No figure
    • 

    corecore