84 research outputs found
Melting as a String-Mediated Phase Transition
We present a theory of the melting of elemental solids as a
dislocation-mediated phase transition. We model dislocations near melt as
non-interacting closed strings on a lattice. In this framework we derive simple
expressions for the melting temperature and latent heat of fusion that depend
on the dislocation density at melt. We use experimental data for more than half
the elements in the Periodic Table to determine the dislocation density from
both relations. Melting temperatures yield a dislocation density of (0.61\pm
0.20) b^{-2}, in good agreement with the density obtained from latent heats,
(0.66\pm 0.11) b^{-2}, where b is the length of the smallest
perfect-dislocation Burgers vector. Melting corresponds to the situation where,
on average, half of the atoms are within a dislocation core.Comment: 18 pages, LaTeX, 3 eps figures, to appear in Phys. Rev.
Strings in Homogeneous Background Spacetimes
The string equations of motion for some homogeneous (Kantowski-Sachs, Bianchi
I and Bianchi IX) background spacetimes are given, and solved explicitly in
some simple cases. This is motivated by the recent developments in string
cosmology, where it has been shown that, under certain circumstances, such
spacetimes appear as string-vacua.
Both tensile and null strings are considered. Generally, it is much simpler
to solve for the null strings since then we deal with the null geodesic
equations of General Relativity plus some additional constraints.
We consider in detail an ansatz corresponding to circular strings, and we
discuss the possibility of using an elliptic-shape string ansatz in the case of
homogeneous (but anisotropic) backgrounds.Comment: 25 pages, REVTE
Evolution of cosmic string configurations
We extend and develop our previous work on the evolution of a network of
cosmic strings. The new treatment is based on an analysis of the probability
distribution of the end-to-end distance of a randomly chosen segment of
left-moving string of given length. The description involves three distinct
length scales: , related to the overall string density, , the
persistence length along the string, and , describing the small-scale
structure, which is an important feature of the numerical simulations that have
been done of this problem. An evolution equation is derived describing how the
distribution develops in time due to the combined effects of the universal
expansion, of intercommuting and loop formation, and of gravitational
radiation. With plausible assumptions about the unknown parameters in the
model, we confirm the conclusions of our previous study, that if gravitational
radiation and small-scale structure effects are neglected, the two dominant
length scales both scale in proportion to the horizon size. When the extra
effects are included, we find that while and grow,
initially does not. Eventually, however, it does appear to scale, at a much
lower level, due to the effects of gravitational back-reaction.Comment: 61 pages, requires RevTex v3.0, SUSSEX-TH-93/3-4,
IMPERIAL/TP/92-93/4
LIMITS ON ANISOTROPY AND INHOMOGENEITY FROM THE COSMIC BACKGROUND RADIATION,
We consider directly the equations by which matter imposes anisotropies on
freely propagating background radiation, leading to a new way of using
anisotropy measurements to limit the deviations of the Universe from a
Friedmann-Robertson-Walker (FRW) geometry. This approach is complementary to
the usual Sachs-Wolfe approach: the limits obtained are not as detailed, but
they are more model-independent. We also give new results about combined
matter-radiation perturbations in an almost-FRW universe, and a new exact
solution of the linearised equations.Comment: 18 pages Latex
Holographic dual of the Standard Model on the throat
We apply recent techniques to construct geometries, based on local Calabi-Yau
manifolds, leading to warped throats with 3-form fluxes in string theory, with
interesting structure at their bottom. We provide their holographic dual
description in terms of RG flows for gauge theories with almost conformal
duality cascades and infrared confinement. We describe a model of a throat with
D-branes at its bottom, realizing a 3-family Standard Model like chiral sector.
We provide the explicit holographic dual gauge theory RG flow, and describe the
appearance of the SM degrees of freedom after confinement. As a second
application, we describe throats within throats, namely warped throats with
discontinuous warp factor in different regions of the radial coordinate, and
discuss possible model building applications.Comment: 46 pages, 21 figures, reference adde
Topological Defects and CMB anisotropies : Are the predictions reliable ?
We consider a network of topological defects which can partly decay into
neutrinos, photons, baryons, or Cold Dark Matter. We find that the degree-scale
amplitude of the cosmic microwave background (CMB) anisotropies as well as the
shape of the matter power spectrum can be considerably modified when such a
decay is taken into account. We conclude that present predictions concerning
structure formation by defects might be unreliable.Comment: 14 pages, accepted for publication in PR
Brane Inflation, Solitons and Cosmological Solutions: I
In this paper we study various cosmological solutions for a D3/D7 system
directly from M-theory with fluxes and M2-branes. In M-theory, these solutions
exist only if we incorporate higher derivative corrections from the curvatures
as well as G-fluxes. We take these corrections into account and study a number
of toy cosmologies, including one with a novel background for the D3/D7 system
whose supergravity solution can be completely determined. This new background
preserves all the good properties of the original model and opens up avenues to
investigate cosmological effects from wrapped branes and brane-antibrane
annihilation, to name a few. We also discuss in some detail semilocal defects
with higher global symmetries, for example exceptional ones, that could occur
in a slightly different regime of our D3/D7 model. We show that the D3/D7
system does have the required ingredients to realise these configurations as
non-topological solitons of the theory. These constructions also allow us to
give a physical meaning to the existence of certain underlying homogeneous
quaternionic Kahler manifolds.Comment: Harvmac, 115 pages, 9 .eps figures; v2: typos corrected, references
added and the last section expanded; v3: Few minor typos corrected and
references added. Final version to appear in JHE
Nitrogen atom detection in low-pressure flames by two-photon laser-excited fluorescence
Bittner J, Lawitzki A, Meier U, Kohse-Höinghaus K. Nitrogen atom detection in low-pressure flames by two-photon laser-excited fluorescence. Applied Physics, B. 1991;52(2):108-116.Nitrogen atoms have been detected in stoichiometric flat premixed H2/O2/N2 flames at 33 and 96 mbar doped with small amounts of NH3, HCN, and (CN)2 using two-photon laser excitation at 211 nm and fluorescence detection around 870 nm. The shape of the fluorescence intensity profiles versus height above the burner surface is markedly different for the different additives. Using measured quenching rate coefficients and calibrating with the aid of known N-atom concentrations in a discharge flow reactor, peak N-atom concentrations in these flames are estimated to be on the order of 10 12–5×10 13 cm –3; the detection limit is about 1×10 11 cm –3
A rotação de cultura reduz a matocompetição e aumenta o teor de clorofila e a produtividade do arroz
Spinor model of a perfect fluid and their applications in Bianchi type-I and FRW models
Different characteristic of matter influencing the evolution of the Universe
has been simulated by means of a nonlinear spinor field. Exploiting the spinor
description of perfect fluid and dark energy evolution of the Universe given by
an anisotropic Bianchi type-I (BI) or isotropic Friedmann-Robertson-Walker
(FRW) one has been studied.Comment: 10 pages, 8 Figure
- …