8 research outputs found
"2A-like" signal sequences mediating translational recoding : a novel form of dual protein targeting
The authors gratefully acknowledge the support of the UK Biotechnology and Biological Sciences Research Council (BBSRC) who funded this research. The authors also gratefully acknowledge the support of the Wellcome Trust for the provision of mass spectrometry facilities at St Andrews.We report the initial characterisation of an N-terminal oligopeptide ‘2A-like’ sequence that is able to function both as a signal sequence and as a translational recoding element. Due to this translational recoding activity, two forms of nascent polypeptide are synthesised: (i) when 2A-mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A-like N-terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A-mediated translational recoding has occurred: the 2A-like signal sequence is synthesised as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A-like signal sequence and is localised to the cytoplasm. This type of dual-functional signal sequence results, therefore, in the partitioning of the translation products between the two sub-cellular sites and represents a newly described form of dual protein targeting.Publisher PDFPeer reviewe
Perceptual abstraction and attention
This is a report on the preliminary achievements of WP4 of the IM-CleVeR project on abstraction for cumulative learning, in particular directed to: (1) producing algorithms to develop abstraction features under top-down action influence; (2) algorithms for supporting detection of change in motion pictures; (3) developing attention and vergence control on the basis of locally computed rewards; (4) searching abstract representations suitable for the LCAS framework; (5) developing predictors based on information theory to support novelty detection. The report is organized around these 5 tasks that are part of WP4. We provide a synthetic description of the work done for each task by the partners
Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function
Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes
Gerry Richter, Groundfish Advisory Panel
A review of data-moderate assessments was conducted by a STAR Review Panel (Panel) at th
"2A-like" signal sequences mediating translational recoding:a novel form of dual protein targeting
We report the initial characterisation of an N-terminal oligopeptide ‘2A-like’ sequence that is able to function both as a signal sequence and as a translational recoding element. Due to this translational recoding activity, two forms of nascent polypeptide are synthesised: (i) when 2A-mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A-like N-terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A-mediated translational recoding has occurred: the 2A-like signal sequence is synthesised as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A-like signal sequence and is localised to the cytoplasm. This type of dual-functional signal sequence results, therefore, in the partitioning of the translation products between the two sub-cellular sites and represents a newly described form of dual protein targeting