2,179 research outputs found

    Gravitational Lensing Limits on the Average Redshift of Submillimeter Sources

    Get PDF
    The submillimeter universe has now been explored with the Submillimeter Common User Bolometer Array (SCUBA) camera on the James Clerk Maxwell Telescope, and a claim has been made to the presence of a new population of optically unidentified starforming galaxies at high redshifts (z \gtrsim 3). Such a population dramatically alters current views on the star formation history of the universe as well as galaxy formation and evolution. Recently, new radio identifications of the Hubble Deep Field submm sources have led to the suggestion that some of these sources are at low redshifts, however, submm source redshift distribution is still not well determined. Here, we present an upper limit to the average redshift by comparing the expected number of gravitationally lensed submm sources due to foreground cluster potentials to current observed statistics of such lensed sources. The upper limit depends on the cosmological parameters, and at the 68% confidence level, < 3.1, 4.8, 5.2, or 8.0 for (Omega,Lambda) values of (0.3,0.7), (0.5,0.5), (0.3,0.0) or (1.0,0.0) respectively. These upper limits are consistent with redshift distribution for 850 micron sources implied by starformation history models based on measured background radiation at far-infrared and submm wavelengths.Comment: Accepted for publication in ApJ Letters (4 pages, including 1 table

    Gravitational Lensing as a Probe of Quintessence

    Full text link
    A large number of cosmological studies now suggest that roughly two-thirds of the critical energy density of the Universe exists in a component with negative pressure. If the equation of state of such an energy component varies with time, it should in principle be possible to identify such a variation using cosmological probes over a wide range in redshift. Proper detection of any time variation, however, requires cosmological probes beyond the currently studied range in redshift of ∼\sim 0.1 to 1. We extend our analysis to gravitational lensing statistics at high redshift and suggest that a reliable sample of lensed sources, out to a redshift of ∼\sim 5, can be used to constrain the variation of the equation of state, provided that both the redshift distribution of lensed sources and the selection function involved with the lensed source discovery process are known. An exciting opportunity to catalog an adequate sample of lensed sources (quasars) to probe quintessence is now available with the ongoing Sloan Digital Sky Survey. Writing w(z)≈w0+z(dw/dz)0w(z)\approx w_0 + z (dw/dz)_0, we study the expected accuracy to which the equation of state today w0w_0 and its rate of change (dw/dz)0(dw/dz)_0 can simultaneously be constrained. Such a determination can rule out some missing-energy candidates, such as classes of quintessence models or a cosmological constant.Comment: Accepted for publication in ApJ Letters (4 pages, including 4 figures

    Weak Lensing of the CMB: Cumulants of the Probability Distribution Function

    Get PDF
    We discuss the real-space moments of temperature anisotropies in the cosmic microwave background (CMB) due to weak gravitational lensing by intervening large-scale structure. We show that if the probability distribution function of primordial temperature anisotropies is Gaussian, then it remains unchanged after gravitational lensing. With finite resolution, however, non-zero higher-order cumulants are generated both by lensing autocorrelations and by cross-correlations between the lensing potential and secondary anisotropies in the CMB such as the Sunayev-Zel'dovich (SZ) effect. Skewness is produced by these lensing-SZ correlations, while kurtosis receives contributions from both lensing alone and lensing-SZ correlations. We show that if the projected lensing potential is Gaussian, all cumulants of higher-order than the kurtosis vanish. While recent results raise the possibility of detection of the skewness in upcoming data, the kurtosis will likely remain undetected.Comment: 11 pages, 4 figures, submitted to PR

    An Upper Limit on Omega_matter Using Lensed Arcs

    Full text link
    We use current observations on the number statistics of gravitationally lensed optical arcs towards galaxy clusters to derive an upper limit on the cosmological mass density of the Universe. The gravitational lensing statistics due to foreground clusters combine properties of both cluster evolution, which is sensitive to the matter density, and volume change, which is sensitive to the cosmological constant. The uncertainties associated with the predicted number of lensing events, however, currently do not allow one to distinguish between flat and open cosmological models with and without a cosmological constant. Still, after accounting for known errors, and assuming that clusters in general have dark matter core radii of the order ~ 35 h^-1 kpc, we find that the cosmological mass density, Omega_m, is less than 0.56 at the 95% confidence. Such a dark matter core radius is consistent with cluster potentials determined recently by detailed numerical inversions of strong and weak lensing imaging data. If no core radius is present, the upper limit on Omega_m increases to 0.62 (95% confidence level). The estimated upper limit on Omega_m is consistent with various cosmological probes that suggest a low matter density for the Universe.Comment: 6 pages, 3 figures. Accepted version (ApJ in press

    Future weak lensing constraints in a dark coupled universe

    Get PDF
    Coupled cosmologies can predict values for the cosmological parameters at low redshifts which may differ substantially from the parameters values within non-interacting cosmologies. Therefore, low redshift probes, as the growth of structure and the dark matter distribution via galaxy and weak lensing surveys constitute a unique tool to constrain interacting dark sector models. We focus here on weak lensing forecasts from future Euclid and LSST-like surveys combined with the ongoing Planck cosmic microwave background experiment. We find that these future data could constrain the dimensionless coupling to be smaller than a few ×10−2\times 10^{-2}. The coupling parameter ξ\xi is strongly degenerate with the cold dark matter energy density Ωch2\Omega_{c}h^2 and the Hubble constant H0H_0.These degeneracies may cause important biases in the cosmological parameter values if in the universe there exists an interaction among the dark matter and dark energy sectors.Comment: 8 pages, 6 figure

    An indirect limit on the amplitude of primordial Gravitational Wave Background from CMB-Galaxy Cross Correlation

    Full text link
    While large scale cosmic microwave background (CMB) anisotropies involve a combination of the scalar and tensor fluctuations, the scalar amplitude can be independently determined through the CMB-galaxy cross-correlation. Using recently measured cross-correlation amplitudes, arising from the cross-correlation between galaxies and the Integrated Sachs Wolfe effect in CMB anisotropies, we obtain a constraint r < 0.5 at 68% confidence level on the tensor-to-scalar fluctuation amplitude ratio. The data also allow us to exclude gravity waves at a level of a few percent, relative to the density field, in a low - Lambda dominated universe(Omega_Lambda~0.5). In future, joining cross-correlation ISW measurements, which captures cosmological parameter information, with independent determinations of the matter density and CMB anisotropy power spectrum, may constrain the tensor-to-scalar ratio to a level above 0.05. This value is the ultimate limit on tensor-to-scalar ratio from temperature anisotropy maps when all other cosmological parameters except for the tensor amplitude are known and the combination with CMB-galaxy correlation allows this limit to be reached easily by accounting for degeneracies in certain cosmological parameters.Comment: 5 Pages, 1 Figure, revised discussion on cosmic variance limits on the tensor-to-scalar ratio from CMB, matches PRD accepted versio

    Distances and Cosmology From Galaxy Cluster CMB Data

    Full text link
    The measurement of angular diameter distance to galaxy clusters, through combined Sunyaev-Zel'dovich (SZ) effect data with X-ray emission observations, is now a well-known probe of cosmology. Using a combination of SZ data and a map of the lensed CMB anisotropies by the galaxy cluster potential, we propose an alternative geometric technique to measure distance information primarily through cluster related multi-frequency CMB measurements. We discuss necessary requirements to implement this measurement, potential errors including systematic biases, and the extent to which cosmological parameters can be extracted. While individual cluster distances are not likely to be precise, with upcoming subarcminute resolution wide-area CMB observations, useful information on certain cosmological parameters, such as the equation of state of dark energy, can be obtained from a large sample of galaxy clusters.Comment: 4 pages, 2 figure

    A Lensing Reconstruction of Primordial Cosmic Microwave Background Polarization

    Get PDF
    We discuss a possibility to directly reconstruct the CMB polarization field at the last scattering surface by accounting for modifications imposed by the gravitational lensing effect. The suggested method requires a tracer field of the large scale structure lensing potentials that deflected propagating CMB photons from the last scattering surface. This required information can come from a variety of observations on the large scale structure matter distribution, including convergence reconstructed from lensing shear studies involving galaxy shapes. In the case of so-called curl, or B,-modes of CMB polarization, the reconstruction allows one to identify the distinct signature of inflationary gravitational waves.Comment: 6 pages, 2 figures; PRD submitte
    • …
    corecore