48,940 research outputs found

    Exact and approximate dynamics of the quantum mechanical O(N) model

    Full text link
    We study a quantum dynamical system of N, O(N) symmetric, nonlinear oscillators as a toy model to investigate the systematics of a 1/N expansion. The closed time path (CTP) formalism melded with an expansion in 1/N is used to derive time evolution equations valid to order 1/N (next-to-leading order). The effective potential is also obtained to this order and its properties areelucidated. In order to compare theoretical predictions against numerical solutions of the time-dependent Schrodinger equation, we consider two initial conditions consistent with O(N) symmetry, one of them a quantum roll, the other a wave packet initially to one side of the potential minimum, whose center has all coordinates equal. For the case of the quantum roll we map out the domain of validity of the large-N expansion. We discuss unitarity violation in the 1/N expansion; a well-known problem faced by moment truncation techniques. The 1/N results, both static and dynamic, are also compared to those given by the Hartree variational ansatz at given values of N. We conclude that late-time behavior, where nonlinear effects are significant, is not well-described by either approximation.Comment: 16 pages, 12 figrures, revte

    Isospectral Potentials from Modified Factorization

    Full text link
    Factorization of quantum mechanical potentials has a long history extending back to the earliest days of the subject. In the present paper, the non-uniqueness of the factorization is exploited to derive new isospectral non-singular potentials. Many one-parameter families of potentials can be generated from known potentials using a factorization that involves superpotentials defined in terms of excited states of a potential. For these cases an operator representation is available. If ladder operators are known for the original potential, then a straightforward procedure exists for defining such operators for its isospectral partners. The generality of the method is illustrated with a number of examples which may have many possible applications in atomic and molecular physics.Comment: 8 pages, 4 figure

    Time evolution of the chiral phase transition during a spherical expansion

    Full text link
    We examine the non-equilibrium time evolution of the hadronic plasma produced in a relativistic heavy ion collision, assuming a spherical expansion into the vacuum. We study the O(4)O(4) linear sigma model to leading order in a large-NN expansion. Starting at a temperature above the phase transition, the system expands and cools, finally settling into the broken symmetry vacuum state. We consider the proper time evolution of the effective pion mass, the order parameter σ\langle \sigma \rangle, and the particle number distribution. We examine several different initial conditions and look for instabilities (exponentially growing long wavelength modes) which can lead to the formation of disoriented chiral condensates (DCCs). We find that instabilities exist for proper times which are less than 3 fm/c. We also show that an experimental signature of domain growth is an increase in the low momentum spectrum of outgoing pions when compared to an expansion in thermal equilibrium. In comparison to particle production during a longitudinal expansion, we find that in a spherical expansion the system reaches the ``out'' regime much faster and more particles get produced. However the size of the unstable region, which is related to the domain size of DCCs, is not enhanced.Comment: REVTex, 20 pages, 8 postscript figures embedded with eps

    Chaos in Time Dependent Variational Approximations to Quantum Dynamics

    Full text link
    Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and in the self-consistent mean field approach to studying the dynamics of quantum fields. In this study, we first show that any variational approximation to the dynamics of a quantum system based on the Dirac action principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact quantum evolution. We then restrict attention to a system of two biquadratically coupled quantum oscillators and study two variational schemes, the leading order large N (four canonical variables) and Hartree (six canonical variables) approximations. The chaos seen in the approximate dynamics is an artifact of the approximations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the breakdown of the approximations when compared to numerical solutions of the time-dependent Schrodinger equation.Comment: 10 pages (12 figures), RevTeX (plus macro), uses epsf, minor typos correcte

    Exact factorization of the time-dependent electron-nuclear wavefunction

    Get PDF
    We present an exact decomposition of the complete wavefunction for a system of nuclei and electrons evolving in a time-dependent external potential. We derive formally exact equations for the nuclear and electronic wavefunctions that lead to rigorous definitions of a time-dependent potential energy surface (TDPES) and a time-dependent geometric phase. For the H2+H_2^+ molecular ion exposed to a laser field, the TDPES proves to be a useful interpretive tool to identify different mechanisms of dissociation.Comment: 4 pages, 2 figure

    An O(N) symmetric extension of the Sine-Gordon Equation

    Full text link
    We discuss an O(N) exension of the Sine-Gordon (S-G)equation which allows us to perform an expansion around the leading order in large-N result using Path-Integral methods. In leading order we show our methods agree with the results of a variational calculation at large-N. We discuss the striking differences for a non-polynomial interaction between the form for the effective potential in the Gaussian approximation that one obtains at large-N when compared to the N=1 case. This is in contrast to the case when the classical potential is a polynomial in the field and no such drastic differences occur. We find for our large-N extension of the Sine-Gordon model that the unbroken ground state is unstable as one increases the coupling constant (as it is for the original S-G equation) and we determine the stability criteria.Comment: 21 pages, Latex (Revtex4) v3:minor grammatical changes and addition

    Gauge Fields Out-Of-Equilibrium: A Gauge Invariant Formulation and the Coulomb Gauge

    Full text link
    We study the abelian Higgs model out-of-equilibrium in two different approaches, a gauge invariant formulation, proposed by Boyanovsky et al. \cite{Boyanovsky:1996dc} and in the Coulomb gauge. We show that both approaches become equivalent in a consistent one loop approximation. Furthermore, we carry out a proper renormalization for the model in order to prepare the equations for a numerical implementation. The additional degrees of freedom, which arise in gauge theories, influence the behavior of the system dramatically. A comparison with results in the 't Hooft-Feynman background gauge found by us recently, shows very good agreement.Comment: 32 pages, 8 figure

    Non-perturbative approach for the time-dependent symmetry breaking

    Full text link
    We present a variational method which uses a quartic exponential function as a trial wave-function to describe time-dependent quantum mechanical systems. We introduce a new physical variable yy which is appropriate to describe the shape of wave-packet, and calculate the effective action as a function of both the dispersion \sqrt{} and yy. The effective potential successfully describes the transition of the system from the false vacuum to the true vacuum. The present method well describes the long time evolution of the wave-function of the system after the symmetry breaking, which is shown in comparison with the direct numerical computations of wave-function.Comment: 8 pages, 3 figure
    corecore