10,007 research outputs found

    CARMIL family proteins as multidomain regulators of actin-based motility

    Get PDF
    CARMILs are large multidomain proteins that regulate the actin-binding activity of capping protein (CP), a major capper of actin filament barbed ends in cells. CARMILs bind directly to CP and induce a conformational change that allosterically decreases but does not abolish its actin-capping activity. The CP-binding domain of CARMIL consists of the CP-interaction (CPI) and CARMIL-specific interaction (CSI) motifs, which are arranged in tandem. Many cellular functions of CARMILs require the interaction with CP; however, a more surprising result is that the cellular function of CP in cells appears to require binding to a CARMIL or another protein with a CPI motif, suggesting that CPI-motif proteins target CP and modulate its actin-capping activity. Vertebrates have three highly conserved genes and expressed isoforms of CARMIL with distinct and overlapping localizations and functions in cells. Various domains of these CARMIL isoforms interact with plasma membranes, vimentin intermediate filaments, SH3-containing class I myosins, the dual-GEF Trio, and other adaptors and signaling molecules. These biochemical properties suggest that CARMILs play a variety of membrane-associated functions related to actin assembly and signaling. CARMIL mutations and variants have been implicated in several human diseases. We focus on roles for CARMILs in signaling in addition to their function as regulators of CP and actin. </jats:p

    HISTORICAL OVERVIEW OF BIOMECHANICS

    Get PDF

    Flight test techniques for the X-29A aircraft

    Get PDF
    The X-29A advanced technology demonstrator is a single-seat, single-engine aircraft with a forward-swept wing. The aircraft incorporates many advanced technologies being considered for this country's next generation of aircraft. This unusual aircraft configuration, which had never been flown before, required a precise approach to flight envelope expansion. This paper describes the real-time analysis methods and flight test techniques used during the envelope expansion of the x-29A aircraft, including new and innovative approaches

    RESEARCH IMPLICATIONS FOR THE COACH AND PERFORMER

    Get PDF

    SLoMo: automated site localization of modifications from ETD/ECD mass spectra

    Get PDF
    Recently, software has become available to automate localization of phosphorylation sites from CID data and to assign associated confidence scores. We present an algorithm, SLoMo (Site Localization of Modifications), which extends this capability to ETD/ECD mass spectra. Furthermore, SLoMo caters for both high and low resolution data and allows for site-localization of any UniMod post-translational modification. SLoMo accepts input data from a variety of formats (e.g., Sequest, OMSSA). We validate SLoMo with high and low resolution ETD, ECD, and CID data

    The Incidence of Low-Metallicity Lyman-Limit Systems at z~3.5: Implications for the Cold-Flow Hypothesis of Baryonic Accretion

    Get PDF
    Cold accretion is a primary growth mechanism of simulated galaxies, yet observational evidence of "cold flows" at redshifts where they should be most efficient (z=2z=2-4) is scarce. In simulations, cold streams manifest as Lyman-limit absorption systems (LLSs) with low heavy-element abundances similar to those of the diffuse IGM. Here we report on an abundance survey of 17 H I-selected LLSs at z=3.2z=3.2-4.4 which exhibit no metal absorption in SDSS spectra. Using medium-resolution spectra obtained at Magellan, we derive ionization-corrected metallicities (or limits) with a Markov-Chain Monte Carlo sampling that accounts for the large uncertainty in NHIN_{\rm HI} measurements typical of LLSs. The metal-poor LLS sample overlaps with the IGM in metallicity and is best described by a model where 71−11+13%71^{+13}_{-11}\% are drawn from the IGM chemical abundance distribution. These represent roughly half of all LLSs at these redshifts, suggesting that 28-40%\% of the general LLS population at z∼3.7z\sim3.7 could trace unprocessed gas. An ancillary sample of ten LLSs without any a priori metal-line selection is best fit with 48−12+14%48^{+14}_{-12}\% of metallicities drawn from the IGM. We compare these results with regions of a moving-mesh simulation; the simulation finds only half as many baryons in IGM-metallicity LLSs, and most of these lie beyond the virial radius of the nearest galaxy halo. A statistically significant fraction of all LLSs have low metallicity and therefore represent candidates for accreting gas; large-volume simulations can establish what fraction of these candidates actually lie near galaxies and the observational prospects for detecting the presumed hosts in emission.Comment: 19 pages, 17 figures; Submitted to ApJ; Corrected figure 16

    Exact and approximate dynamics of the quantum mechanical O(N) model

    Full text link
    We study a quantum dynamical system of N, O(N) symmetric, nonlinear oscillators as a toy model to investigate the systematics of a 1/N expansion. The closed time path (CTP) formalism melded with an expansion in 1/N is used to derive time evolution equations valid to order 1/N (next-to-leading order). The effective potential is also obtained to this order and its properties areelucidated. In order to compare theoretical predictions against numerical solutions of the time-dependent Schrodinger equation, we consider two initial conditions consistent with O(N) symmetry, one of them a quantum roll, the other a wave packet initially to one side of the potential minimum, whose center has all coordinates equal. For the case of the quantum roll we map out the domain of validity of the large-N expansion. We discuss unitarity violation in the 1/N expansion; a well-known problem faced by moment truncation techniques. The 1/N results, both static and dynamic, are also compared to those given by the Hartree variational ansatz at given values of N. We conclude that late-time behavior, where nonlinear effects are significant, is not well-described by either approximation.Comment: 16 pages, 12 figrures, revte

    Crises and disruptions: Educational reflections, (re)imaginings, and (re)vitalization

    Get PDF
    COVID-19 has illuminated and exacerbated inequities, yet, as a crisis, it is not exceptional in its effect oneducation. We start this critical essay by situating the crisis in its historical, economic, and political contexts,illustrating how crisis and violence intersect as structural conditions of late modernity, capitalism, and theireducation systems. Situating the current crisis contextually lays the foundation to analyse how it has beeninterpreted through three sets of policy imaginaries, characterised by the notions of learning loss and buildingback better and by solutions primarily based on techno-education. These concepts reflect and are reflective ofthe international aid and development paradigm during the pandemic. Building on this analysis, we present, inthe final section, an alternative radical vision that calls on a sociology of possibilities and pedagogies of hopethat we see to be central to a new people-centred education imaginary to disrupt current inequalities and providea new way of doing rather than a return to a business-as-usual approach in and through educatio

    Project Link!: Dynamics and Control of In-Flight Wing Tip Docking

    Get PDF
    Project Link! is a NASA-led effort to study the feasibility of multi-aircraft aerial docking systems. In these systems, a group of vehicles physically link to each other during flight to form a larger ensemble vehicle with increased aerodynamic performance and mission utility. This paper presents a dynamic model and control architecture for a system of fixed-wing vehicles with this capability. The dynamic model consists of the 6 degree-of-freedom fixed-wing aircraft equations of motion, a spring-damper-magnet system to represent the linkage force between constituent vehicles, and the NASA-Burnham-Hallock wingtip vortex model to represent the close-proximity aerodynamic interactions between constituents before the linking occurs. The control architecture consists of a guidance algorithm to autonomously drive the constituents towards their linking partners and an inner-loop angular rate controller. A simulation was constructed from the model, and the flight dynamic modes of the linked system were compared to the individual vehicles. Simulation results for both before and after linking are presented
    • …
    corecore