52,899 research outputs found

    Exact and approximate dynamics of the quantum mechanical O(N) model

    Full text link
    We study a quantum dynamical system of N, O(N) symmetric, nonlinear oscillators as a toy model to investigate the systematics of a 1/N expansion. The closed time path (CTP) formalism melded with an expansion in 1/N is used to derive time evolution equations valid to order 1/N (next-to-leading order). The effective potential is also obtained to this order and its properties areelucidated. In order to compare theoretical predictions against numerical solutions of the time-dependent Schrodinger equation, we consider two initial conditions consistent with O(N) symmetry, one of them a quantum roll, the other a wave packet initially to one side of the potential minimum, whose center has all coordinates equal. For the case of the quantum roll we map out the domain of validity of the large-N expansion. We discuss unitarity violation in the 1/N expansion; a well-known problem faced by moment truncation techniques. The 1/N results, both static and dynamic, are also compared to those given by the Hartree variational ansatz at given values of N. We conclude that late-time behavior, where nonlinear effects are significant, is not well-described by either approximation.Comment: 16 pages, 12 figrures, revte

    Chaos in Time Dependent Variational Approximations to Quantum Dynamics

    Full text link
    Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and in the self-consistent mean field approach to studying the dynamics of quantum fields. In this study, we first show that any variational approximation to the dynamics of a quantum system based on the Dirac action principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact quantum evolution. We then restrict attention to a system of two biquadratically coupled quantum oscillators and study two variational schemes, the leading order large N (four canonical variables) and Hartree (six canonical variables) approximations. The chaos seen in the approximate dynamics is an artifact of the approximations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the breakdown of the approximations when compared to numerical solutions of the time-dependent Schrodinger equation.Comment: 10 pages (12 figures), RevTeX (plus macro), uses epsf, minor typos correcte

    Cyclic Identities Involving Jacobi Elliptic Functions. II

    Full text link
    Identities involving cyclic sums of terms composed from Jacobi elliptic functions evaluated at pp equally shifted points on the real axis were recently found. These identities played a crucial role in discovering linear superposition solutions of a large number of important nonlinear equations. We derive four master identities, from which the identities discussed earlier are derivable as special cases. Master identities are also obtained which lead to cyclic identities with alternating signs. We discuss an extension of our results to pure imaginary and complex shifts as well as to the ratio of Jacobi theta functions.Comment: 38 pages. Modified and includes more new identities. A shorter version of this will appear in J. Math. Phys. (May 2003

    Resumming the large-N approximation for time evolving quantum systems

    Get PDF
    In this paper we discuss two methods of resumming the leading and next to leading order in 1/N diagrams for the quartic O(N) model. These two approaches have the property that they preserve both boundedness and positivity for expectation values of operators in our numerical simulations. These approximations can be understood either in terms of a truncation to the infinitely coupled Schwinger-Dyson hierarchy of equations, or by choosing a particular two-particle irreducible vacuum energy graph in the effective action of the Cornwall-Jackiw-Tomboulis formalism. We confine our discussion to the case of quantum mechanics where the Lagrangian is L(x,x˙)=(1/2)∑i=1Nx˙i2−(g/8N)[∑i=1Nxi2−r02]2L(x,\dot{x}) = (1/2) \sum_{i=1}^{N} \dot{x}_i^2 - (g/8N) [ \sum_{i=1}^{N} x_i^2 - r_0^2 ]^{2}. The key to these approximations is to treat both the xx propagator and the x2x^2 propagator on similar footing which leads to a theory whose graphs have the same topology as QED with the x2x^2 propagator playing the role of the photon. The bare vertex approximation is obtained by replacing the exact vertex function by the bare one in the exact Schwinger-Dyson equations for the one and two point functions. The second approximation, which we call the dynamic Debye screening approximation, makes the further approximation of replacing the exact x2x^2 propagator by its value at leading order in the 1/N expansion. These two approximations are compared with exact numerical simulations for the quantum roll problem. The bare vertex approximation captures the physics at large and modest NN better than the dynamic Debye screening approximation.Comment: 30 pages, 12 figures. The color version of a few figures are separately liste

    Solitary Waves and Compactons in a class of Generalized Korteweg-DeVries Equations

    Full text link
    We study the class of generalized Korteweg-DeVries equations derivable from the Lagrangian: L(l,p) = \int \left( \frac{1}{2} \vp_{x} \vp_{t} - { {(\vp_{x})^{l}} \over {l(l-1)}} + \alpha(\vp_{x})^{p} (\vp_{xx})^{2} \right) dx, where the usual fields u(x,t)u(x,t) of the generalized KdV equation are defined by u(x,t) = \vp_{x}(x,t). This class contains compactons, which are solitary waves with compact support, and when l=p+2l=p+2, these solutions have the feature that their width is independent of the amplitude. We consider the Hamiltonian structure and integrability properties of this class of KdV equations. We show that many of the properties of the solitary waves and compactons are easily obtained using a variational method based on the principle of least action. Using a class of trial variational functions of the form u(x,t)=A(t)exp⁥[−ÎČ(t)∣x−q(t)∣2n]u(x,t) = A(t) \exp \left[-\beta (t) \left|x-q(t) \right|^{2n} \right] we find soliton-like solutions for all nn, moving with fixed shape and constant velocity, cc. We show that the velocity, mass, and energy of the variational travelling wave solutions are related by c=2rEM−1 c = 2 r E M^{-1}, where r=(p+l+2)/(p+6−l) r = (p+l+2)/(p+6-l), independent of nn.\newline \newline PACS numbers: 03.40.Kf, 47.20.Ky, Nb, 52.35.SbComment: 16 pages. LaTeX. Figures available upon request (Postscript or hard copy

    Evaluating Descriptive Metrics of the Human Cone Mosaic

    Get PDF
    Purpose: To evaluate how metrics used to describe the cone mosaic change in response to simulated photoreceptor undersampling (i.e., cell loss or misidentification). Methods: Using an adaptive optics ophthalmoscope, we acquired images of the cone mosaic from the center of fixation to 10° along the temporal, superior, inferior, and nasal meridians in 20 healthy subjects. Regions of interest (n = 1780) were extracted at regular intervals along each meridian. Cone mosaic geometry was assessed using a variety of metrics − density, density recovery profile distance (DRPD), nearest neighbor distance (NND), intercell distance (ICD), farthest neighbor distance (FND), percentage of six-sided Voronoi cells, nearest neighbor regularity (NNR), number of neighbors regularity (NoNR), and Voronoi cell area regularity (VCAR). The “performance” of each metric was evaluated by determining the level of simulated loss necessary to obtain 80% statistical power. Results: Of the metrics assessed, NND and DRPD were the least sensitive to undersampling, classifying mosaics that lost 50% of their coordinates as indistinguishable from normal. The NoNR was the most sensitive, detecting a significant deviation from normal with only a 10% cell loss. Conclusions: The robustness of cone spacing metrics makes them unsuitable for reliably detecting small deviations from normal or for tracking small changes in the mosaic over time. In contrast, regularity metrics are more sensitive to diffuse loss and, therefore, better suited for detecting such changes, provided the fraction of misidentified cells is minimal. Combining metrics with a variety of sensitivities may provide a more complete picture of the integrity of the photoreceptor mosaic

    Time evolution of the chiral phase transition during a spherical expansion

    Full text link
    We examine the non-equilibrium time evolution of the hadronic plasma produced in a relativistic heavy ion collision, assuming a spherical expansion into the vacuum. We study the O(4)O(4) linear sigma model to leading order in a large-NN expansion. Starting at a temperature above the phase transition, the system expands and cools, finally settling into the broken symmetry vacuum state. We consider the proper time evolution of the effective pion mass, the order parameter ⟚σ⟩\langle \sigma \rangle, and the particle number distribution. We examine several different initial conditions and look for instabilities (exponentially growing long wavelength modes) which can lead to the formation of disoriented chiral condensates (DCCs). We find that instabilities exist for proper times which are less than 3 fm/c. We also show that an experimental signature of domain growth is an increase in the low momentum spectrum of outgoing pions when compared to an expansion in thermal equilibrium. In comparison to particle production during a longitudinal expansion, we find that in a spherical expansion the system reaches the ``out'' regime much faster and more particles get produced. However the size of the unstable region, which is related to the domain size of DCCs, is not enhanced.Comment: REVTex, 20 pages, 8 postscript figures embedded with eps

    Chaos in effective classical and quantum dynamics

    Full text link
    We investigate the dynamics of classical and quantum N-component phi^4 oscillators in the presence of an external field. In the large N limit the effective dynamics is described by two-degree-of-freedom classical Hamiltonian systems. In the classical model we observe chaotic orbits for any value of the external field, while in the quantum case chaos is strongly suppressed. A simple explanation of this behaviour is found in the change in the structure of the orbits induced by quantum corrections. Consistently with Heisenberg's principle, quantum fluctuations are forced away from zero, removing in the effective quantum dynamics a hyperbolic fixed point that is a major source of chaos in the classical model.Comment: 6 pages, RevTeX, 5 figures, uses psfig, changed indroduction and conclusions, added reference

    Formulas for Continued Fractions. An Automated Guess and Prove Approach

    Full text link
    We describe a simple method that produces automatically closed forms for the coefficients of continued fractions expansions of a large number of special functions. The function is specified by a non-linear differential equation and initial conditions. This is used to generate the first few coefficients and from there a conjectured formula. This formula is then proved automatically thanks to a linear recurrence satisfied by some remainder terms. Extensive experiments show that this simple approach and its straightforward generalization to difference and qq-difference equations capture a large part of the formulas in the literature on continued fractions.Comment: Maple worksheet attache

    Pauli equation and the method of supersymmetric factorization

    Full text link
    We consider different variants of factorization of a 2x2 matrix Schroedinger/Pauli operator in two spatial dimensions. They allow to relate its spectrum to the sum of spectra of two scalar Schroedinger operators, in a manner similar to one-dimensional Darboux transformations. We consider both the case when such factorization is reduced to the ordinary 2-dimensional SUSY QM quasifactorization and a more general case which involves covariant derivatives. The admissible classes of electromagnetic fields are described and some illustrative examples are given.Comment: 18 pages, Late
    • 

    corecore