968 research outputs found

    OCIS Public Goods Tool Development

    Get PDF
    There has recently been an increase in interest amongst policy-makers in the question of whether farming provides a “public good” beyond the simple production of food, which justifies support from, for instance, EU agricultural policy. Benefits such as an improved environment or better water quality can be perceived to be public goods. It is the provision of these sorts of benefits which may be used in the future to justify continued support of the agricultural sector through subsidies. Given the current level of interest in this topic Natural England, with the approval of Defra, through OCIS (Organic Conversion Information Service), wished to create a tool which could be used by an advisor or an informed land owner to assess the public good provided by a/their farm. Thus, the OCIS Public Good Tool was developed

    Subdural haematoma in infancy

    Get PDF
    A 1950's medical research paper on Subdural Haematoma during a child's infancy

    A Desktop Universe for the Introductory Astronomy Laboratory

    Full text link
    What is a well-intentioned astronomy instructor to do? There is no argument that experience with the real world is desirable in any astronomy course, especially the introductory classes that fulfill the science distribution requirements at many colleges and universities. Though it is a simple matter to take students out of doors, show them the motions of the Sun, Moon, and stars, and have them squint for a few seconds at Saturn\u27s rings through a telescope, these activities represent only a small portion of the subject matter of modern astronomy. It is simply not possible, given the constraints of time, weather, and equipment at most schools, to have students determine the photometric distance of a star cluster, measure the dispersion distance of a pulsar, or confirm Hubble\u27s redshift-distance relation for themselves. [excerpt

    Immunotherapy for Pediatric Cancer

    Get PDF
    AbstractImprovements in adult cancer survivorship can be achieved from behavioral changes and adopting screening programs. Yet, these approaches cannot be readily applied to lower the morbidity and mortality from childhood cancers. Rather, pediatric oncologists must rely on procedures and therapies to treat, rather than prevent malignancies. The systematic application of chemotherapy, radiation therapy, and surgery has led to remarkable advances in survival but these improvements have come at a cost. Children routinely receive chemotherapy agents that were designed decades ago, and these drugs have predictable side effects that result in the loss of potential for long-term survivors. The advent of targeted applications of immune-based therapies offers children with cancer a new class of oncolytic therapies that may be used to treat disease refractory to conventional approaches and lessen the toxicity of current treatment regimens without compromising remission. This review explores how 3 components of the immune system—T cells, natural killer (NK) cells, and antibodies—can be used for therapy of pediatric malignancies

    Quantitative High-Throughput Single-Cell Cytotoxicity Assay for T cells

    Get PDF
    Cancer immunotherapy can harness the specificity of immune response to target and eliminate tumors. Adoptive cell therapy (ACT) based on the adoptive transfer of T cells genetically modified to express a chimeric antigen receptor (CAR) has shown considerable promise in clinical trials1-4. There are several advantages to using CAR+ T cells for the treatment of cancers including the ability to target non-MHC restricted antigens and to functionalize the T cells for optimal survival, homing and persistence within the host; and finally to induce apoptosis of CAR+ T cells in the event of host toxicity5. Delineating the optimal functions of CAR+ T cells associated with clinical benefit is essential for designing the next generation of clinical trials. Recent advances in live animal imaging like multiphoton microscopy have revolutionized the study of immune cell function in vivo6,7. While these studies have advanced our understanding of T-cell functions in vivo, T-cell based ACT in clinical trials requires the need to link molecular and functional features of T-cell preparations pre-infusion with clinical efficacy post-infusion, by utilizing in vitro assays monitoring T-cell functions like, cytotoxicity and cytokine secretion. Standard flow-cytometry based assays have been developed that determine the overall functioning of populations of T cells at the single-cell level but these are not suitable for monitoring conjugate formation and lifetimes or the ability of the same cell to kill multiple targets8. Microfabricated arrays designed in biocompatible polymers like polydimethylsiloxane (PDMS) are a particularly attractive method to spatially confine effectors and targets in small volumes9. In combination with automated time-lapse fluorescence microscopy, thousands of effector-target interactions can be monitored simultaneously by imaging individual wells of a nanowell array. We present here a high-throughput methodology for monitoring T-cell mediated cytotoxicity at the single-cell level that can be broadly applied to studying the cytolytic functionality of T cells
    • …
    corecore