190 research outputs found

    Difference Antenna Selection and Power Allocation for Wireless Cognitive Systems

    Full text link
    In this paper, we propose an antenna selection method in a wireless cognitive radio (CR) system, namely difference selection, whereby a single transmit antenna is selected at the secondary transmitter out of MM possible antennas such that the weighted difference between the channel gains of the data link and the interference link is maximized. We analyze mutual information and outage probability of the secondary transmission in a CR system with difference antenna selection, and propose a method of optimizing these performance metrics of the secondary data link subject to practical constraints on the peak secondary transmit power and the average interference power as seen by the primary receiver. The optimization is performed over two parameters: the peak secondary transmit power and the difference selection weight δ∈[0,1]\delta\in [0, 1]. We show that, difference selection using the optimized parameters determined by the proposed method can be, in many cases of interest, superior to a so called ratio selection method disclosed in the literature, although ratio selection has been shown to be optimal, when impractically, the secondary transmission power constraint is not applied. We address the effects that the constraints have on mutual information and outage probability, and discuss the practical implications of the results.Comment: 29 pages, 9 figures, to be submitted to IEEE Transactions on Communication

    An Approximation of the First Order Marcum QQ-Function with Application to Network Connectivity Analysis

    Full text link
    An exponential-type approximation of the first order Marcum QQ-function is presented, which is robust to changes in its first argument and can easily be integrated with respect to the second argument. Such characteristics are particularly useful in network connectivity analysis. The proposed approximation is exact in the limit of small first argument of the Marcum QQ-function, in which case the optimal parameters can be obtained analytically. For larger values of the first argument, an optimization problem is solved, and the parameters can be accurately represented using regression analysis. Numerical results indicate that the proposed methods result in approximations very close to the actual Marcum QQ-function for small and moderate values of the first argument. We demonstrate the accuracy of the approximation by using it to analyze the connectivity properties of random ad hoc networks operating in a Rician fading environment.Comment: 6 pages, 4 figures, 1 tabl

    Quantum Enhanced Classical Sensor Networks

    Full text link
    The quantum enhanced classical sensor network consists of KK clusters of NeN_e entangled quantum states that have been trialled rr times, each feeding into a classical estimation process. Previous literature has shown that each cluster can {ideally} achieve an estimation variance of 1/Ne2r1/N_e^2r for sufficient rr. We begin by deriving the optimal values for the minimum mean squared error of this quantum enhanced classical system. We then show that if noise is \emph{absent} in the classical estimation process, the mean estimation error will decay like Ω(1/KNe2r)\Omega(1/KN_e^2r). However, when noise is \emph{present} we find that the mean estimation error will decay like Ω(1/K)\Omega(1/K), so that \emph{all} the sensing gains obtained from the individual quantum clusters will be lost

    On the Distribution of Random Geometric Graphs

    Get PDF
    Random geometric graphs (RGGs) are commonly used to model networked systems that depend on the underlying spatial embedding. We concern ourselves with the probability distribution of an RGG, which is crucial for studying its random topology, properties (e.g., connectedness), or Shannon entropy as a measure of the graph's topological uncertainty (or information content). Moreover, the distribution is also relevant for determining average network performance or designing protocols. However, a major impediment in deducing the graph distribution is that it requires the joint probability distribution of the n(n−1)/2n(n-1)/2 distances between nn nodes randomly distributed in a bounded domain. As no such result exists in the literature, we make progress by obtaining the joint distribution of the distances between three nodes confined in a disk in R2\mathbb{R}^2. This enables the calculation of the probability distribution and entropy of a three-node graph. For arbitrary nn, we derive a series of upper bounds on the graph entropy; in particular, the bound involving the entropy of a three-node graph is tighter than the existing bound which assumes distances are independent. Finally, we provide numerical results on graph connectedness and the tightness of the derived entropy bounds.Comment: submitted to the IEEE International Symposium on Information Theory 201

    Adaptive OFDM Index Modulation for Two-Hop Relay-Assisted Networks

    Full text link
    In this paper, we propose an adaptive orthogonal frequency-division multiplexing (OFDM) index modulation (IM) scheme for two-hop relay networks. In contrast to the traditional OFDM IM scheme with a deterministic and fixed mapping scheme, in this proposed adaptive OFDM IM scheme, the mapping schemes between a bit stream and indices of active subcarriers for the first and second hops are adaptively selected by a certain criterion. As a result, the active subcarriers for the same bit stream in the first and second hops can be varied in order to combat slow frequency-selective fading. In this way, the system reliability can be enhanced. Additionally, considering the fact that a relay device is normally a simple node, which may not always be able to perform mapping scheme selection due to limited processing capability, we also propose an alternative adaptive methodology in which the mapping scheme selection is only performed at the source and the relay will simply utilize the selected mapping scheme without changing it. The analyses of average outage probability, network capacity and symbol error rate (SER) are given in closed form for decode-and-forward (DF) relaying networks and are substantiated by numerical results generated by Monte Carlo simulations.Comment: 30 page
    • …
    corecore