5,684 research outputs found

    A Ground-based Search for Lunar Resources Using High-resolution Imaging in the Infrared

    Get PDF
    When humans return to the Moon, lunar resources will play an important role in the successful deployment and maintenance of the lunar base. Previous studies have illustrated the abundance of resource materials available on the surface of the Moon, as well as their ready accessibility. Particularly worth considering are the lunar regional (2,000-30,000 sq km) pyroclastic deposits scattered about the lunar nearside. These 30-50-m-thick deposits are composed of fine-grained unconsolidated titanium- and iron-rich mafic glasses and may be used as bulk feedstock for the beneficiation of oxygen, iron, titanium, sulfur, and other solar wind gases, or simply used as is for construction and shielding purposes. A groundbased observing survey of the resource-rich regions on the lunar nearside using a new imaging technique designed to obtain much higher resolution images, and more precise compositional analyses than previously obtainable is proposed

    Investigation of AC Loss in HTS Cross-Conductor Cables for Electrical Power Transmission

    Full text link
    This paper presents the alternating current (AC) loss analysis on high-temperature superconductor (HTS) Cross-Conductor (CroCo) cables, in order to evaluate whether they could be utilized for electrical power transmission. The modeling of HTS CroCo cables was based on a cable assembled at the Karlsruhe Institute of Technology (KIT) and the AC loss calculation was based on the H-formulation model implemented in the finite-element method (FEM) software package COMSOL Multiphysics. The AC loss calculations have been carried out for isolated single-phase CroCo cable and three-phase CroCo cables. The AC loss angular dependence of a particular phase of CroCo cables during three phase operation has been studied. The current distributions of individual tapes within CroCo cables have been investigated

    On the formulation of thermodynamically-consistent viscoplastic-damage constitutive models.

    Get PDF
    This paper illustrates the formulation of viscoplastic-damage constitutive models using the framework of hyperplasticity. The entire constitutive behaviour is derived from only two scalar potentials; a free energy potential and a dissipation potential. This ensures that the model obeys the laws of thermodynamics

    Experimental study of the normal zone propagation velocity in double-layer 2G-HTS wires by thermal and electrical methods

    Get PDF
    The Normal Zone Propagation Velocity (NZPV) of a double-layer second generation (2G) high temperature superconducting (HTS) wire manufactured by American Superconductor has been measured by electrical and thermal methods, and the results have been compared and discussed. The NZPV values determined by the voltage traces are ranging from 3.8 mm/s at 0.4 Ic to 19.2 mm/s at 0.9 Ic; while from 5.9 mm/s to 18.3 mm/s by the temperature traces. NZPV determined by these two approaches agrees well with each other. Also, NZPV of double-layer YBCO tape is close to that of conventional single-layer superconducting tape.This work was supported in part by the EPSRC under Grant NMZF/064.This is the accepted manuscript. The final version is available from IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6963291&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6353170%29%26rowsPerPage%3D50

    Defining the gap between research and practice in public relations programme evaluation - towards a new research agenda

    Get PDF
    The current situation in public relations programme evaluation is neatly summarized by McCoy who commented that 'probably the most common buzzwords in public relations in the last ten years have been evaluation and accountability' (McCoy 2005, 3). This paper examines the academic and practitioner-based literature and research on programme evaluation and it detects different priorities and approaches that may partly explain why the debate on acceptable and agreed evaluation methods continues. It analyses those differences and proposes a research agenda to bridge the gap and move the debate forward

    Interactive effects between carbon allotrope fillers on the mechanical reinforcement of polyisoprene based nanocomposites

    Get PDF
    Interactive effects of carbon allotropes on the mechanical reinforcement of polymer nanocomposites were investigated. Carbon nanotubes (CNT) and nano-graphite with high shape anisotropy (nanoG) were melt blended with poly(1,4- cis-isoprene), as the only fillers or in combination with carbon black (CB), measuring the shear modulus at low strain amplitudes for peroxide crosslinked composites. The nanofiller was found to increase the low amplitude storage modulus of the matrix, with or without CB, by a factor depending on nanofiller type and content. This factor, fingerprint of the nanofiller, was higher for CNT than for nanoG. The filler-polymer interfacial area was able to correlate modulus data of composites with CNT, CB and with the hybrid filler system, leading to the construction of a common master curve. © BME-PT

    Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields

    Full text link
    Crossed magnetic field effects on bulk high-temperature superconductors have been studied both experimentally and numerically. The sample geometry investigated involves finite-size effects along both (crossed) magnetic field directions. The experiments were carried out on bulk melt-processed Y-Ba-Cu-O (YBCO) single domains that had been pre-magnetized with the applied field parallel to their shortest direction (i.e. the c-axis) and then subjected to several cycles of the application of a transverse magnetic field parallel to the sample ab plane. The magnetic properties were measured using orthogonal pick-up coils, a Hall probe placed against the sample surface and Magneto-Optical Imaging (MOI). We show that all principal features of the experimental data can be reproduced qualitatively using a two-dimensional finite-element numerical model based on an E-J power law and in which the current density flows perpendicularly to the plane within which the two components of magnetic field are varied. The results of this study suggest that the suppression of the magnetic moment under the action of a transverse field can be predicted successfully by ignoring the existence of flux-free configurations or flux-cutting effects. These investigations show that the observed decay in magnetization results from the intricate modification of current distribution within the sample cross-section. It is also shown that the model does not predict any saturation of the magnetic induction, even after a large number (~ 100) of transverse field cycles. These features are shown to be consistent with the experimental data.Comment: 41 pages, 9 figures, accepted in Phys. Rev. B Changes : 8 references added, a few precisions added, some typos correcte
    corecore