1,876 research outputs found

    Forms and meanings of the Thai particle ná

    Get PDF

    Forms and Meanings of the Thai Particle Si

    Get PDF

    Forms and meanings of the Thai particle si

    Get PDF

    Thai nasalised vowels

    Get PDF

    Benzonitrile as a Proxy for Benzene in the Cold ISM: Low-temperature Rate Coefficients for CN + C₆H₆

    Get PDF
    The low-temperature reaction between CN and benzene (C₆H₆) is of significant interest in the astrochemical community due to the recent detection of benzonitrile, the first aromatic molecule identified in the interstellar medium (ISM) using radio astronomy. Benzonitrile is suggested to be a low-temperature proxy for benzene, one of the simplest aromatic molecules, which may be a precursor to polycyclic aromatic hydrocarbons. In order to assess the robustness of benzonitrile as a proxy for benzene, low-temperature kinetics measurements are required to confirm whether the reaction remains rapid at the low gas temperatures found in cold dense clouds. Here, we study the C₆H₆ + CN reaction in the temperature range 15–295 K, using the well-established CRESU technique (a French acronym standing for Reaction Kinetics in Uniform Supersonic Flow) combined with pulsed-laser photolysis-laser-induced fluorescence. We obtain rate coefficients, k(T), in the range (3.6–5.4) × 10⁻¹⁰ cm³ s⁻¹ with no obvious temperature dependence between 15 and 295 K, confirming that the CN + C₆H₆ reaction remains rapid at temperatures relevant to the cold ISM

    Genetically engineered parasites: the solution to designing an effective malaria vaccine?

    No full text
    Genetic engineering provides an ingenious method of attenuating Plasmodium falciparum parasites for next generation vaccines. A novel approach stimulates new optimism in the struggle to eliminate the burden of malaria

    Benzonitrile as a Proxy for Benzene in the Cold ISM: Low-temperature Rate Coefficients for CN + C₆H₆

    Get PDF
    The low-temperature reaction between CN and benzene (C₆H₆) is of significant interest in the astrochemical community due to the recent detection of benzonitrile, the first aromatic molecule identified in the interstellar medium (ISM) using radio astronomy. Benzonitrile is suggested to be a low-temperature proxy for benzene, one of the simplest aromatic molecules, which may be a precursor to polycyclic aromatic hydrocarbons. In order to assess the robustness of benzonitrile as a proxy for benzene, low-temperature kinetics measurements are required to confirm whether the reaction remains rapid at the low gas temperatures found in cold dense clouds. Here, we study the C₆H₆ + CN reaction in the temperature range 15–295 K, using the well-established CRESU technique (a French acronym standing for Reaction Kinetics in Uniform Supersonic Flow) combined with pulsed-laser photolysis-laser-induced fluorescence. We obtain rate coefficients, k(T), in the range (3.6–5.4) × 10⁻¹⁰ cm³ s⁻¹ with no obvious temperature dependence between 15 and 295 K, confirming that the CN + C₆H₆ reaction remains rapid at temperatures relevant to the cold ISM

    Rate Constants of the CN + Toluene Reaction from 15 – 294 K and Interstellar Implications

    Get PDF
    CN is known for its fast reactions with hydrocarbons at low temperatures, but relatively few studies have focused on the reactions between CN and aromatic molecules. The recent detection of benzonitrile in the interstellar medium, believed to be produced by the reaction of CN and benzene, has ignited interest in studying these reactions. Here, we report rate constants of the CN + toluene (C₇H₈) reaction between 15 and 294 K using a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme; reaction kinetics in uniform supersonic flow) apparatus coupled with the pulsed laser photolysis–laser-induced fluorescence (PLP–LIF) technique. We also present the stationary points on the potential energy surface of this reaction to study the available reaction pathways. We find the rate constant does not change over this temperature range, with an average value of (4.1 ± 0.2) × 10⁻¹⁰ cm³ s⁻¹, which is notably faster than the only previous measurement at 105 K. While the reason for this disagreement is unknown, we discuss the possibility that it is related to enhanced multiphoton effects in the previous work
    corecore