788 research outputs found
Hydrazine compounds inhibit glycation of low-density lipoproteins and prevent the in vitro formation of model foam cells from glycolaldehyde-modified low-density lipoproteins
Aims/hypothesis: Previous studies have shown that glycation of LDL by methylglyoxal and glycolaldehyde, in the absence of significant oxidation, results in lipid accumulation in macrophage cells. Such 'foam cells' are a hallmark of atherosclerosis. In this study we examined whether LDL glycation by methylglyoxal or glycolaldehyde, and subsequent lipid loading of cells, can be inhibited by agents that scavenge reactive carbonyls. Such compounds may have therapeutic potential in diabetes-associated atherosclerosis. Materials and methods: LDL was glycated with methylglyoxal or glycolaldehyde in the absence or presence of metformin, aminoguanidine, Girard's reagents P and T, or hydralazine. LDL modification was characterised by changes in mobility (agarose gel electrophoresis), cross-linking (SDS-PAGE) and loss of amino acid residues (HPLC). Accumulation of cholesterol and cholesteryl esters in murine macrophages was assessed by HPLC. Results: Inhibition of LDL glycation was detected with equimolar or greater concentrations of the scavengers over the reactive carbonyl. This inhibition was structure-dependent and accompanied by a modulation of cholesterol and cholesteryl ester accumulation. With aminoguanidine, Girard's reagent P and hydralazine, cellular sterol levels returned to control levels despite incomplete inhibition of LDL modification. Conclusions/ interpretation: Inhibition of LDL glycation by interception of the reactive aldehydes that induce LDL modification prevents lipid loading and model foam cell formation in murine macrophage cells. Carbonyl-scavenging reagents, such as hydrazines, may therefore help inhibit LDL glycation in vivo and prevent diabetes-induced atherosclerosis. Β© Springer-Verlag 2006
Molecular characterization of a multidrug resistance IncF plasmid from the globally disseminated Escherichia coli ST131 clone.
Escherichia coli sequence type 131 (E. coli ST131) is a recently emerged and globally disseminated multidrug resistant clone associated with urinary tract and bloodstream infections. Plasmids represent a major vehicle for the carriage of antibiotic resistance genes in E. coli ST131. In this study, we determined the complete sequence and performed a comprehensive annotation of pEC958, an IncF plasmid from the E. coli ST131 reference strain EC958. Plasmid pEC958 is 135.6 kb in size, harbours two replicons (RepFIA and RepFII) and contains 12 antibiotic resistance genes (including the blaCTX-M-15 gene). We also carried out hyper-saturated transposon mutagenesis and multiplexed transposon directed insertion-site sequencing (TraDIS) to investigate the biology of pEC958. TraDIS data showed that while only the RepFII replicon was required for pEC958 replication, the RepFIA replicon contains genes essential for its partitioning. Thus, our data provides direct evidence that the RepFIA and RepFII replicons in pEC958 cooperate to ensure their stable inheritance. The gene encoding the antitoxin component (ccdA) of the post-segregational killing system CcdAB was also protected from mutagenesis, demonstrating this system is active. Sequence comparison with a global collection of ST131 strains suggest that IncF represents the most common type of plasmid in this clone, and underscores the need to understand its evolution and contribution to the spread of antibiotic resistance genes in E. coli ST131
Multiple evolutionary trajectories for non-O157 Shiga toxigenic Escherichia coli
AbstractBackgroundShiga toxigenic Escherichia coli (STEC) is an emerging global pathogen and remains a major cause of food-borne illness with more severe symptoms including hemorrhagic colitis and hemolytic-uremic syndrome. Since the characterization of the archetypal STEC serotype, E. coli O157:H7, more than 250 STEC serotypes have been defined. Many of these non-O157 STEC are associated with clinical cases of equal severity as O157. In this study, we utilize whole genome sequencing of 44 STEC strains from eight serogroups associated with human infection to establish their evolutionary relationships and contrast this with their virulence gene profiles and established typing methods.ResultsOur phylogenomic analysis delineated these STEC strains into seven distinct lineages, each with a characteristic repertoire of virulence factors. Some lineages included commensal or other E. coli pathotypes. Multiple independent acquisitions of the Locus for Enterocyte Effacement were identified, each associated with a distinct repertoire of effector genes. Lineages were inconsistent with O-antigen typing in several instances, consistent with lateral gene transfer within the O-antigen locus. STEC lineages could be defined by the conservation of clustered regularly interspaced short palindromic repeats (CRISPRs), however, no CRISPR profile could differentiate STEC from other E. coli strains. Six genomic regions (ranging from 500 bp - 10 kbp) were found to be conserved across all STEC in this dataset and may dictate interactions with Stx phage lysogeny.ConclusionsThe genomic analyses reported here present non-O157 STEC as a diverse group of pathogenic E. coli emerging from multiple lineages that independently acquired mobile genetic elements that promote pathogenesis.</jats:sec
Is heavy eccentric calf training superior to wait-and-see, sham rehabilitation, traditional physiotherapy and other exercise interventions for pain and function in mid-portion Achilles tendinopathy?
Background: Mid-portion Achilles tendinopathy (AT) is prevalent amongst athletic and non-athletic populations with pain, stiffness and impaired function typically reported. While different management options exist, loading protocols remain the best available intervention and have been shown to be effective in the management of AT. Trials investigating loading in AT have used a variety of different protocols, and recent narrative reviews suggest that no protocol is superior to another when comparing outcomes in pain and function. However, there has been no systematic review or meta-analysis completed to determine this. Furthermore, the narrative review did not consider wait-and-see or sham interventions, thus a systematic review and met-analysis which includes wait-and see or sham interventions is warranted.
Methods: A systematic review and meta-analyses will be conducted as per the PRISMA guidelines. The databases PUBMED, CINAHL (Ovid) and CINAHL (EBSCO) will be searched for articles published from inception to 31 December 2017. Our search focuses on studies examining the improvement of pain and function when completing a loading program for mid-portion AT. Only randomised/ quasi-randomised trials will be included while case reports and case series will be excluded. The primary outcome assessing pain and function will be the Victorian Institute Sports Assessment - Achilles (VISA-A). Two reviewers will screen articles, extract data and assess the risk of bias independently with a third reviewer resolving any disagreements between the two reviewers. A meta-analysis will then be performed on the data (if appropriate) to determine if the traditional heavy load calf training protocol described by Alfredson is superior to wait-and-see, sham intervention, traditional physiotherapy, and other forms of exercise rehabilitation.
Discussion: This systematic review and meta-analysis will allow us to investigate if there are difference in pain and function when comparing wait-and-see, sham interventions, traditional physiotherapy and different exercise interventions to the traditional heavy eccentric calf training protocol for mid-portion Achilles tendon pain.
Systematic review registration: PROSPERO registration number CRD42018084493
A Comprehensive Approach to Identify Reliable Reference Gene Candidates to Investigate the Link between Alcoholism and Endocrinology in Sprague-Dawley Rats
Gender and hormonal differences are often correlated with alcohol dependence and related complications like addiction and breast cancer. Estrogen (E2) is an important sex hormone because it serves as a key protein involved in organism level signaling pathways. Alcoholism has been reported to affect estrogen receptor signaling; however, identifying the players involved in such multi-faceted syndrome is complex and requires an interdisciplinary approach. In many situations, preliminary investigations included a straight forward, yet informative biotechniques such as gene expression analyses using quantitative real time PCR (qRT-PCR). The validity of qRT-PCR-based conclusions is affected by the choice of reliable internal controls. With this in mind, we compiled a list of 15 commonly used housekeeping genes (HKGs) as potential reference gene candidates in rat biological models. A comprehensive comparison among 5 statistical approaches (geNorm, dCt method, NormFinder, BestKeeper, and RefFinder) was performed to identify the minimal number as well the most stable reference genes required for reliable normalization in experimental rat groups that comprised sham operated (SO), ovariectomized rats in the absence (OVX) or presence of E2 (OVXE2). These rat groups were subdivided into subgroups that received alcohol in liquid diet or isocalroic control liquid diet for 12 weeks. Our results showed that U87, 5S rRNA, GAPDH, and U5a were the most reliable gene candidates for reference genes in heart and brain tissue. However, different gene stability ranking was specific for each tissue input combination. The present preliminary findings highlight the variability in reference gene rankings across different experimental conditions and analytic methods and constitute a fundamental step for gene expression assays
Expression-Dependent Folding of Interphase Chromatin
Multiple studies suggest that chromatin looping might play a crucial role in organizing eukaryotic genomes. To investigate the interplay between the conformation of interphase chromatin and its transcriptional activity, we include information from gene expression profiles into a polymer model for chromatin that incorporates genomic loops. By relating loop formation to transcriptional activity, we are able to generate chromosome conformations whose structural and topological properties are consistent with experimental data. The model particularly allows to reproduce the conformational variations that are known to occur between highly and lowly expressed chromatin regions. As previously observed in experiments, lowly expressed regions of the simulated polymers are much more compact. Due to the changes in loop formation, the distributions of chromatin loops are also expression-dependent and exhibit a steeper decay in highly active regions. As a results of entropic interaction between differently looped parts of the chromosome, we observe topological alterations leading to a preferential positioning of highly transcribed loci closer to the surface of the chromosome territory. Considering the diffusional behavior of the chromatin fibre, the simulations furthermore show that the higher the expression level of specific parts of the chromatin fibre is, the more dynamic they are. The results exhibit that variations of loop formation along the chromatin fibre, and the entropic changes that come along with it, do not only influence the structural parameters on the local scale, but also effect the global chromosome conformation and topology
The influence of parental smoking and family type on saliva cotinine in UK ethnic minority children: a cross sectional study
Background
In the United Kingdom, there has been an increase in cigarette smoking in ethnic minority adults since the 1970s; in some groups levels are now similar to that of White British people. We aimed to examine the determinants of exposure to secondhand smoke in ethnic minority children. We hypothesised that exposure to secondhand smoke in children will vary across ethnic groups, but that the correlates of exposure would be similar to that of Whites.
Methods
The Determinants of Adolescent Social well-being and Health sample comprises 3468 White United Kingdom and ethnic minority (Black Caribbean, Black African, Indian, Pakistani, Bangladeshi) pupils aged 11-13 yrs. Outcome was saliva cotinine concentration. Explanatory variables collected by self-complete questionnaire included ethnicity, child reported household smoking and socio-economic circumstances. Data were analysed using linear regression models with a random intercept function.
Results
Ethnic minority children had lower saliva cotinine than Whites, partly explained by less smoking among parents. White and Black Caribbean children had higher cotinine levels if they lived in a household with a maternal smoker only, than with a paternal smoker only. Living in a lone compared to a dual parent household was associated with increased cotinine concentration of 45% (95%CI 5, 99%) in Whites, 27% (95%CI 5,53%) in Black Caribbeans and 21% (95%CI 1, 45%) in Black Africans after adjusting for household smoking status. Material disadvantage was a significant correlate only for White children (40% (95%CI 1, 94%) increase in cotinine in least compared to most advantaged group).
Conclusions
Ethnic minority children were less exposed to secondhand smoke than Whites, but the variations within groups were similarly patterned. These findings suggest that it is important not to be complacent about low smoking prevalence in some minority groups
- β¦