14,823 research outputs found

    Fragmentation of Nuclei at Intermediate and High Energies in Modified Cascade Model

    Get PDF
    The process of nuclear multifragmentation has been implemented, together with evaporation and fission channels of the disintegration of excited remnants in nucleus-nucleus collisions using percolation theory and the intranuclear cascade model. Colliding nuclei are treated as face--centered--cubic lattices with nucleons occupying the nodes of the lattice. The site--bond percolation model is used. The code can be applied for calculation of the fragmentation of nuclei in spallation and multifragmentation reactions.Comment: 19 pages, 10 figure

    The Innermost Stable Circular Orbit of Binary Black Holes

    Full text link
    We introduce a new method to construct solutions to the constraint equations of general relativity describing binary black holes in quasicircular orbit. Black hole pairs with arbitrary momenta can be constructed with a simple method recently suggested by Brandt and Bruegmann, and quasicircular orbits can then be found by locating a minimum in the binding energy along sequences of constant horizon area. This approach produces binary black holes in a "three-sheeted" manifold structure, as opposed to the "two-sheeted" structure in the conformal-imaging approach adopted earlier by Cook. We focus on locating the innermost stable circular orbit and compare with earlier calculations. Our results confirm those of Cook and imply that the underlying manifold structure has a very small effect on the location of the innermost stable circular orbit.Comment: 8 pages, 3 figures, RevTex, submitted to PR

    Implementing an apparent-horizon finder in three dimensions

    Get PDF
    Locating apparent horizons is not only important for a complete understanding of numerically generated spacetimes, but it may also be a crucial component of the technique for evolving black-hole spacetimes accurately. A scheme proposed by Libson et al., based on expanding the location of the apparent horizon in terms of symmetric trace-free tensors, seems very promising for use with three-dimensional numerical data sets. In this paper, we generalize this scheme and perform a number of code tests to fully calibrate its behavior in black-hole spacetimes similar to those we expect to encounter in solving the binary black-hole coalescence problem. An important aspect of the generalization is that we can compute the symmetric trace-free tensor expansion to any order. This enables us to determine how far we must carry the expansion to achieve results of a desired accuracy. To accomplish this generalization, we describe a new and very convenient set of recurrence relations which apply to symmetric trace-free tensors.Comment: 14 pages (RevTeX 3.0 with 3 figures

    Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity

    Get PDF
    We perform 3D numerical simulations in full general relativity to study the stability of rapidly rotating, supramassive neutron stars at the mass-shedding limit to dynamical collapse. We adopt an adiabatic equation of state with Γ=2\Gamma = 2 and focus on uniformly rotating stars. We find that the onset of dynamical instability along mass-shedding sequences nearly coincides with the onset of secular instability. Unstable stars collapse to rotating black holes within about one rotation period. We also study the collapse of stable stars which have been destabilized by pressure depletion (e.g. via a phase transition) or mass accretion. In no case do we find evidence for the formation of massive disks or any ejecta around the newly formed Kerr black holes, even though the progenitors are rapidly rotating.Comment: 16 pages, to appear in Phys. Rev.

    Solving the Initial Value Problem of two Black Holes

    Get PDF
    We solve the elliptic equations associated with the Hamiltonian and momentum constraints, corresponding to a system composed of two black holes with arbitrary linear and angular momentum. These new solutions are based on a Kerr-Schild spacetime slicing which provides more physically realistic solutions than the initial data based on conformally flat metric/maximal slicing methods. The singularity/inner boundary problems are circumvented by a new technique that allows the use of an elliptic solver on a Cartesian grid where no points are excised, simplifying enormously the numerical problem.Comment: 4 pages, 3 figures. Minor corrections, some points clarified, and one reference added. To appear in Phys. Rev. Let

    Random billiards with wall temperature and associated Markov chains

    Full text link
    By a random billiard we mean a billiard system in which the standard specular reflection rule is replaced with a Markov transition probabilities operator P that, at each collision of the billiard particle with the boundary of the billiard domain, gives the probability distribution of the post-collision velocity for a given pre-collision velocity. A random billiard with microstructure (RBM) is a random billiard for which P is derived from a choice of geometric/mechanical structure on the boundary of the billiard domain. RBMs provide simple and explicit mechanical models of particle-surface interaction that can incorporate thermal effects and permit a detailed study of thermostatic action from the perspective of the standard theory of Markov chains on general state spaces. We focus on the operator P itself and how it relates to the mechanical/geometric features of the microstructure, such as mass ratios, curvatures, and potentials. The main results are as follows: (1) we characterize the stationary probabilities (equilibrium states) of P and show how standard equilibrium distributions studied in classical statistical mechanics, such as the Maxwell-Boltzmann distribution and the Knudsen cosine law, arise naturally as generalized invariant billiard measures; (2) we obtain some basic functional theoretic properties of P. Under very general conditions, we show that P is a self-adjoint operator of norm 1 on an appropriate Hilbert space. In a simple but illustrative example, we show that P is a compact (Hilbert-Schmidt) operator. This leads to the issue of relating the spectrum of eigenvalues of P to the features of the microstructure;(3) we explore the latter issue both analytically and numerically in a few representative examples;(4) we present a general algorithm for simulating these Markov chains based on a geometric description of the invariant volumes of classical statistical mechanics

    Initial Data and Coordinates for Multiple Black Hole Systems

    Get PDF
    We present here an alternative approach to data setting for spacetimes with multiple moving black holes generalizing the Kerr-Schild form for rotating or non-rotating single black holes to multiple moving holes. Because this scheme preserves the Kerr-Schild form near the holes, it selects out the behaviour of null rays near the holes, may simplify horizon tracking, and may prove useful in computational applications. For computational evolution, a discussion of coordinates (lapse function and shift vector) is given which preserves some of the properties of the single-hole Kerr-Schild form

    Kerr-Schild type initial data for black holes with angular momenta

    Full text link
    Generalizing previous work we propose how to superpose spinning black holes in a Kerr-Schild initial slice. This superposition satisfies several physically meaningful limits, including the close and the far ones. Further we consider the close limit of two black holes with opposite angular momenta and explicitly solve the constraint equations in this case. Evolving the resulting initial data with a linear code, we compute the radiated energy as a function of the masses and the angular momenta of the black holes.Comment: 13 pages, 3 figures. Revised version. To appear in Classical and Quantum Gravit

    Preliminary Results for the Extraction and Measurement of Cosmogenic in Situ 14

    Get PDF
    From the 18th International Radiocarbon Conference held in Wellington, New Zealand, September 1-5, 2003.Radiocarbon is produced within minerals at the earth's surface (in situ production) by a number of spallation reactions. Its relatively short half-life of 5730 yr provides us with a unique cosmogenic nuclide tool for the measurement of rapid erosion rates (>10^-3 cm yr-1) and events occurring over the past 25 kyr. At SUERC, we have designed and built a vacuum system to extract 14C from quartz which is based on a system developed at the University of Arizona. This system uses resistance heating of samples to a temperature of approximately 1100 degrees C in the presence of lithium metaborate (LiBO2) to dissolve the quartz and liberate any carbon present. During extraction, the carbon is oxidized to CO2 in an O2atmosphere so that it may be collected cryogenically. The CO2 is subsequently purified and converted to graphite for accelerator mass spectrometry (AMS) measurement. One of the biggest problems in measuring in situ 14C is establishing a low and reproducible system blank and efficient extraction of the in situ 14C component. Here, we present initial data for 14C-free CO2, derived from geological carbonate and added to the vacuum system to determine the system blank. Shielded quartz samples (which should be 14C free) and a surface quartz sample routinely analyzed at the University of Arizona were also analyzed at SUERC, and the data compared with values derived from the University of Arizona system.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202
    • …
    corecore