640 research outputs found
Relativistic Models for Binary Neutron Stars with Arbitrary Spins
We introduce a new numerical scheme for solving the initial value problem for
quasiequilibrium binary neutron stars allowing for arbitrary spins. The coupled
Einstein field equations and equations of relativistic hydrodynamics are solved
in the Wilson-Mathews conformal thin sandwich formalism. We construct sequences
of circular-orbit binaries of varying separation, keeping the rest mass and
circulation constant along each sequence. Solutions are presented for
configurations obeying an n=1 polytropic equation of state and spinning
parallel and antiparallel to the orbital angular momentum. We treat stars with
moderate compaction ((m/R) = 0.14) and high compaction ((m/R) = 0.19). For all
but the highest circulation sequences, the spins of the neutron stars increase
as the binary separation decreases. Our zero-circulation cases approximate
irrotational sequences, for which the spin angular frequencies of the stars
increases by 13% (11%) of the orbital frequency for (m/R) = 0.14 ((m/R) = 0.19)
by the time the innermost circular orbit is reached. In addition to leaving an
imprint on the inspiral gravitational waveform, this spin effect is measurable
in the electromagnetic signal if one of the stars is a pulsar visible from
Earth.Comment: 21 pages, 14 figures. A few explanatory sentences added and some
typos corrected. Accepted for publication in Phys. Rev.
Expansion for Excited Baryons
We derive consistency conditions which constrain the possible form of the
strong couplings of the excited baryons to the pions. The consistency
conditions follow from requiring the pion-excited baryon scattering amplitudes
to satisfy the large-N_c Witten counting rules and are analogous to consistency
conditions used by Dashen, Jenkins and Manohar and others for s-wave baryons.
The consistency conditions are explicitly solved, giving the most general
allowed form of the strong vertices for excited baryons in the large-N_c limit.
We show that the solutions to the large-N_c consistency conditions coincide
with the predictions of the nonrelativistic quark model for these states,
extending the results previously obtained for the s-wave baryons. The 1/N_c
corrections to these predictions are studied in the quark model with arbitrary
number of colors N_c.Comment: 56 pages, REVTeX; one new Appendix added containing a discussion of
the results in the language of quark operator
Post-Newtonian SPH calculations of binary neutron star coalescence. I. Method and first results
We present the first results from our Post-Newtonian (PN) Smoothed Particle
Hydrodynamics (SPH) code, which has been used to study the coalescence of
binary neutron star (NS) systems. The Lagrangian particle-based code
incorporates consistently all lowest-order (1PN) relativistic effects, as well
as gravitational radiation reaction, the lowest-order dissipative term in
general relativity. We test our code on sequences of single NS models of
varying compactness, and we discuss ways to make PN simulations more relevant
to realistic NS models. We also present a PN SPH relaxation procedure for
constructing equilibrium models of synchronized binaries, and we use these
equilibrium models as initial conditions for our dynamical calculations of
binary coalescence. Though unphysical, since tidal synchronization is not
expected in NS binaries, these initial conditions allow us to compare our PN
work with previous Newtonian results.
We compare calculations with and without 1PN effects, for NS with stiff
equations of state, modeled as polytropes with . We find that 1PN
effects can play a major role in the coalescence, accelerating the final
inspiral and causing a significant misalignment in the binary just prior to
final merging. In addition, the character of the gravitational wave signal is
altered dramatically, showing strong modulation of the exponentially decaying
waveform near the end of the merger. We also discuss briefly the implications
of our results for models of gamma-ray bursts at cosmological distances.Comment: RevTeX, 37 pages, 17 figures, to appear in Phys. Rev. D, minor
corrections onl
Primordialists and Constructionists: a typology of theories of religion
This article adopts categories from nationalism theory to classify theories of religion. Primordialist explanations are grounded in evolutionary psychology and emphasize the innate human demand for religion. Primordialists predict that religion does not decline in the modern era but will endure in perpetuity. Constructionist theories argue that religious demand is a human construct. Modernity initially energizes religion, but subsequently undermines it. Unpacking these ideal types is necessary in order to describe actual theorists of religion. Three distinctions within primordialism and constructionism are relevant. Namely those distinguishing: a) materialist from symbolist forms of constructionism; b) theories of origins from those pertaining to the reproduction of religion; and c) within reproduction, between theories of religious persistence and secularization. This typology helps to make sense of theories of religion by classifying them on the basis of their causal mechanisms, chronology and effects. In so doing, it opens up new sightlines for theory and research
Various features of quasiequilibrium sequences of binary neutron stars in general relativity
Quasiequilibrium sequences of binary neutron stars are numerically calculated
in the framework of the Isenberg-Wilson-Mathews (IWM) approximation of general
relativity. The results are presented for both rotation states of synchronized
spins and irrotational motion, the latter being considered as the realistic one
for binary neutron stars just prior to the merger. We assume a polytropic
equation of state and compute several evolutionary sequences of binary systems
composed of different-mass stars as well as identical-mass stars with adiabatic
indices gamma=2.5, 2.25, 2, and 1.8. From our results, we propose as a
conjecture that if the turning point of binding energy (and total angular
momentum) locating the innermost stable circular orbit (ISCO) is found in
Newtonian gravity for some value of the adiabatic index gamma_0, that of the
ADM mass (and total angular momentum) should exist in the IWM approximation of
general relativity for the same value of the adiabatic index.Comment: Text improved, some figures changed or deleted, new table, 38 pages,
31 figures, accepted for publication in Phys. Rev.
Absorption of electromagnetic and gravitational waves by Kerr black holes
We calculate the absorption cross section for planar waves incident upon Kerr black holes, and present
a unified picture for scalar, electromagnetic and gravitational waves. We highlight the spin-helicity effect
that arises from a coupling between the rotation of the black hole and the helicity of a circularlypolarized
wave. For the case of on-axis incidence, we introduce an extended ‘sinc approximation’ to
quantify the spin-helicity effect in the strong-field regime
Choosing how to choose : Institutional pressures affecting the adoption of personnel selection procedures
The gap between science and practice in personnel selection is an ongoing concern of human resource management. This paper takes Oliver´s framework of organizations´ strategic responses to institutional pressures as a basis for outlining the diverse economic and social demands that facilitate or inhibit the application of scientifically recommended selection procedures. Faced with a complex network of multiple requirements, practitioners make more diverse choices in response to any of these pressures than has previously been acknowledged in the scientific literature. Implications for the science-practitioner gap are discussed
Assessing associations between the AURKAHMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers
While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood appr
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
- …
