687 research outputs found

    WebSOS: Protecting Web Servers From DDoS Attacks

    Get PDF
    We present the WebSOS architecture, a mechanism for countering denial of service (DoS) attacks against web servers. WebSOS uses a combination of overlay networking, content-based routing, and aggressive packet filtering to guarantee access to a service that is targeted by a DoS attack. Our approach requires no modifications to servers or browsers, and makes use of the web proxy feature and TLS client authentication supported by modern browsers. We use a WebSOS prototype to conduct a preliminary performance evaluation both on the local area network and over the Internet using PlanetLab, a testbed for experimentation with network overlays. We determine the end-to-end latency imposed by the architecture to increase by a factor of 5 on average. We conclude that this overhead is reasonable in the context of a determined DoS attack

    Using Graphic Turing Tests To Counter Automated DDoS Attacks Against Web Servers

    Get PDF
    We present WebSOS, a novel overlay-based architecture that provides guaranteed access to a web server that is targeted by a denial of service (DoS) attack. Our approach exploits two key characteristics of the web environment: its design around a human-centric interface, and the extensibility inherent in many browsers through downloadable "applets." We guarantee access to a web server for a large number of previously unknown users, without requiring pre-existing trust relationships between users and the system.Our prototype requires no modifications to either servers or browsers, and makes use of graphical Turing tests, web proxies, and client authentication using the SSL/TLS protocol, all readily supported by modern browsers. We use the WebSOS prototype to conduct a performance evaluation over the Internet using PlanetLab, a testbed for experimentation with network overlays. We determine the end-to-end latency using both a Chord-based approach and our shortcut extension. Our evaluation shows the latency increase by a factor of 7 and 2 respectively, confirming our simulation results

    Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity

    Get PDF
    We perform 3D numerical simulations in full general relativity to study the stability of rapidly rotating, supramassive neutron stars at the mass-shedding limit to dynamical collapse. We adopt an adiabatic equation of state with Γ=2\Gamma = 2 and focus on uniformly rotating stars. We find that the onset of dynamical instability along mass-shedding sequences nearly coincides with the onset of secular instability. Unstable stars collapse to rotating black holes within about one rotation period. We also study the collapse of stable stars which have been destabilized by pressure depletion (e.g. via a phase transition) or mass accretion. In no case do we find evidence for the formation of massive disks or any ejecta around the newly formed Kerr black holes, even though the progenitors are rapidly rotating.Comment: 16 pages, to appear in Phys. Rev.

    Far Ultraviolet Absolute Flux of alpha Virginis

    Full text link
    We present the far ultraviolet spectrum of alpha Virginis taken with EURD spectrograph on-board MINISAT-01. The spectral range covered is from ~900 to 1080 A with 5 A spectral resolution. We have fitted Kurucz models to IUE spectra of alpha Vir and compared the extension of the model to our wavelengths with EURD data. This comparison shows that EURD fluxes are consistent with the prediction of the model within 20-30%, depending on the reddening assumed. EURD fluxes are consistent with Voyager observations but are ~60% higher than most previous rocket observations of alpha Vir.Comment: 13 pages, 4 figures. Submitted to The Astrophysical Journa

    Computing the Complete Gravitational Wavetrain from Relativistic Binary Inspiral

    Get PDF
    We present a new method for generating the nonlinear gravitational wavetrain from the late inspiral (pre-coalescence) phase of a binary neutron star system by means of a numerical evolution calculation in full general relativity. In a prototype calculation, we produce 214 wave cycles from corotating polytropes, representing the final part of the inspiral phase prior to reaching the ISCO. Our method is based on the inequality that the orbital decay timescale due to gravitational radiation is much longer than an orbital period and the approximation that gravitational radiation has little effect on the structure of the stars. We employ quasi-equilibrium sequences of binaries in circular orbit for the matter source in our field evolution code. We compute the gravity-wave energy flux, and, from this, the inspiral rate, at a discrete set of binary separations. From these data, we construct the gravitational waveform as a continuous wavetrain. Finally, we discuss the limitations of our current calculation, planned improvements, and potential applications of our method to other inspiral scenarios.Comment: 4 pages, 4 figure

    Post-Newtonian Models of Binary Neutron Stars

    Get PDF
    Using an energy variational method, we calculate quasi-equilibrium configurations of binary neutron stars modeled as compressible triaxial ellipsoids obeying a polytropic equation of state. Our energy functional includes terms both for the internal hydrodynamics of the stars and for the external orbital motion. We add the leading post-Newtonian (PN) corrections to the internal and gravitational energies of the stars, and adopt hybrid orbital terms which are fully relativistic in the test-mass limit and always accurate to PN order. The total energy functional is varied to find quasi-equilibrium sequences for both corotating and irrotational binaries in circular orbits. We examine how the orbital frequency at the innermost stable circular orbit depends on the polytropic index n and the compactness parameter GM/Rc^2. We find that, for a given GM/Rc^2, the innermost stable circular orbit along an irrotational sequence is about 17% larger than the innermost secularly stable circular orbit along the corotating sequence when n=0.5, and 20% larger when n=1. We also examine the dependence of the maximum neutron star mass on the orbital frequency and find that, if PN tidal effects can be neglected, the maximum equilibrium mass increases as the orbital separation decreases.Comment: 53 pages, LaTex, 9 figures as 10 postscript files, accepted by Phys. Rev. D, replaced version contains updated reference

    Equilibrium and stability of supermassive stars in binary systems

    Get PDF
    We investigate the equilibrium and stability of supermassive stars of mass M \agt 10^5M_{\odot} in binary systems. We find that corotating binaries are secularly unstable for close, circular orbits with r \alt 4R(M/10^6M_{\odot})^{1/6} where rr is the orbital separation and RR the stellar radius. We also show that corotation cannot be achieved for distant orbits with r \agt 12 R (M/10^6M_{\odot})^{-11/24}, since the timescale for viscous angular momentum transfer associated with tidal torques is longer than the evolution timescale due to emission of thermal radiation. These facts suggest that the allowed mass range and orbital separation for corotating supermassive binary stars is severely restricted. In particular, for supermassive binary stars of large mass M \agt 6\times 10^6M_{\odot}, corotation cannot be achieved, as viscosity is not adequate to mediate the transfer between orbital and spin angular momentum. One possible outcome for binary supermassive stars is the onset of quasi-radial, relativistic instability which drives each star to collapse prior to merger: We discuss alternative outcomes of collapse and possible spin states of the resulting black holes. We estimate the frequency and amplitude of gravitational waves emitted during several inspiral and collapse scenarios.Comment: 20 pages, to be published in PR

    The low-order wavefront sensor for the PICTURE-C mission

    Get PDF
    The PICTURE-C mission will fly a 60 cm off-axis unobscured telescope and two high-contrast coronagraphs in successive high-altitude balloon flights with the goal of directly imaging and spectrally characterizing visible scattered light from exozodiacal dust in the interior 1-10 AU of nearby exoplanetary systems. The first flight in 2017 will use a 10^(-4) visible nulling coronagraph (previously flown on the PICTURE sounding rocket) and the second flight in 2019 will use a 10^(-7) vector vortex coronagraph. A low-order wavefront corrector (LOWC) will be used in both flights to remove time-varying aberrations from the coronagraph wavefront. The LOWC actuator is a 76-channel high-stroke deformable mirror packaged on top of a tip-tilt stage. This paper will detail the selection of a complementary high-speed, low-order wavefront sensor (LOWFS) for the mission. The relative performance and feasibility of several LOWFS designs will be compared including the Shack-Hartmann, Lyot LOWFS, and the curvature sensor. To test the different sensors, a model of the time-varying wavefront is constructed using measured pointing data and inertial dynamics models to simulate optical alignment perturbations and surface deformation in the balloon environment

    SARS-CoV-2 anti-spike IgG antibody responses after second dose of ChAdOx1 or BNT162b2 and correlates of protection in the UK general population

    Get PDF
    Antibody responses are an important part of immunity after Coronavirus Disease 2019 (COVID-19) vaccination. However, antibody trajectories and the associated duration of protection after a second vaccine dose remain unclear. In this study, we investigated anti-spike IgG antibody responses and correlates of protection after second doses of ChAdOx1 or BNT162b2 vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the United Kingdom general population. In 222,493 individuals, we found significant boosting of anti-spike IgG by the second doses of both vaccines in all ages and using different dosing intervals, including the 3-week interval for BNT162b2. After second vaccination, BNT162b2 generated higher peak levels than ChAdOX1. Older individuals and males had lower peak levels with BNT162b2 but not ChAdOx1, whereas declines were similar across ages and sexes with ChAdOX1 or BNT162b2. Prior infection significantly increased antibody peak level and half-life with both vaccines. Anti-spike IgG levels were associated with protection from infection after vaccination and, to an even greater degree, after prior infection. At least 67% protection against infection was estimated to last for 2–3 months after two ChAdOx1 doses, for 5–8 months after two BNT162b2 doses in those without prior infection and for 1–2 years for those unvaccinated after natural infection. A third booster dose might be needed, prioritized to ChAdOx1 recipients and those more clinically vulnerable
    • …
    corecore