45,758 research outputs found
Adaptive laser link reconfiguration using constraint propagation
This paper describes Harris AI research performed on the Adaptive Link Reconfiguration (ALR) study for Rome Lab, and focuses on the application of constraint propagation to the problem of link reconfiguration for the proposed space based Strategic Defense System (SDS) Brilliant Pebbles (BP) communications system. According to the concept of operations at the time of the study, laser communications will exist between BP's and to ground entry points. Long-term links typical of RF transmission will not exist. This study addressed an initial implementation of BP's based on the Global Protection Against Limited Strikes (GPALS) SDI mission. The number of satellites and rings studied was representative of this problem. An orbital dynamics program was used to generate line-of-site data for the modeled architecture. This was input into a discrete event simulation implemented in the Harris developed COnstraint Propagation Expert System (COPES) Shell, developed initially on the Rome Lab BM/C3 study. Using a model of the network and several heuristics, the COPES shell was used to develop the Heuristic Adaptive Link Ordering (HALO) Algorithm to rank and order potential laser links according to probability of communication. A reduced set of links based on this ranking would then be used by a routing algorithm to select the next hop. This paper includes an overview of Constraint Propagation as an Artificial Intelligence technique and its embodiment in the COPES shell. It describes the design and implementation of both the simulation of the GPALS BP network and the HALO algorithm in COPES. This is described using a 59 Data Flow Diagram, State Transition Diagrams, and Structured English PDL. It describes a laser communications model and the heuristics involved in rank-ordering the potential communication links. The generation of simulation data is described along with its interface via COPES to the Harris developed View Net graphical tool for visual analysis of communications networks. Conclusions are presented, including a graphical analysis of results depicting the ordered set of links versus the set of all possible links based on the computed Bit Error Rate (BER). Finally, future research is discussed which includes enhancements to the HALO algorithm, network simulation, and the addition of an intelligent routing algorithm for BP
Exotic Meson Decay Widths using Lattice QCD
A decay width calculation for a hybrid exotic meson h, with JPC=1-+, is
presented for the channel h->pi+a1. This quenched lattice QCD simulation
employs Luescher's finite box method. Operators coupling to the h and pi+a1
states are used at various levels of smearing and fuzzing, and at four quark
masses. Eigenvalues of the corresponding correlation matrices yield energy
spectra that determine scattering phase shifts for a discrete set of relative
pi+a1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner
model are attempted, resulting in a decay width of about 60 MeV when averaged
over two lattice sizes.Comment: 9 pages, 8 figures, RevTex4, minor change to Fig.
Formation of molecular oxygen in ultracold O + OH reaction
We discuss the formation of molecular oxygen in ultracold collisions between
hydroxyl radicals and atomic oxygen. A time-independent quantum formalism based
on hyperspherical coordinates is employed for the calculations. Elastic,
inelastic and reactive cross sections as well as the vibrational and rotational
populations of the product O2 molecules are reported. A J-shifting
approximation is used to compute the rate coefficients. At temperatures T = 10
- 100 mK for which the OH molecules have been cooled and trapped
experimentally, the elastic and reactive rate coefficients are of comparable
magnitude, while at colder temperatures, T < 1 mK, the formation of molecular
oxygen becomes the dominant pathway. The validity of a classical capture model
to describe cold collisions of OH and O is also discussed. While very good
agreement is found between classical and quantum results at T=0.3 K, at higher
temperatures, the quantum calculations predict a larger rate coefficient than
the classical model, in agreement with experimental data for the O + OH
reaction. The zero-temperature limiting value of the rate coefficient is
predicted to be about 6.10^{-12} cm^3 molecule^{-1} s^{-1}, a value comparable
to that of barrierless alkali-metal atom - dimer systems and about a factor of
five larger than that of the tunneling dominated F + H2 reaction.Comment: 9 pages, 8 figure
Multiparticle States and the Hadron Spectrum on the Lattice
The Clebsch-Gordan decomposition is calculated for direct products of the
irreducible representations of the cubic space group. These results are used to
identify multiparticle states which appear in the hadron spectrum on the
lattice. Consideration of the cubic space group indicates how combinations of
both zero momentum and non-zero momentum multiparticle states contribute to the
spectrum.Comment: v2) Little groups for lattice momenta corrected. Includes a more
consistent labeling scheme. (13 pages
Seeing Double at Neptune's South Pole
Keck near-infrared images of Neptune from UT 26 July 2007 show that the cloud
feature typically observed within a few degrees of Neptune's south pole had
split into a pair of bright spots. A careful determination of disk center
places the cloud centers at -89.07 +/- 0 .06 and -87.84 +/- 0.06 degrees
planetocentric latitude. If modeled as optically thick, perfectly reflecting
layers, we find the pair of features to be constrained to the troposphere, at
pressures greater than 0.4 bar. By UT 28 July 2007, images with comparable
resolution reveal only a single feature near the south pole. The changing
morphology of these circumpolar clouds suggests they may form in a region of
strong convection surrounding a Neptunian south polar vortex.Comment: 10 pages, 7 figures; accepted to Icaru
- …